Load Transfer Behaviors of the Splice-Jointed Fiber Metal Laminates

연결이음 접합된 섬유금속적층판의 하중전달 거동 연구

  • 노희석 (대한항공, 한국항공기술연구원) ;
  • 최원종 (한국항공대학교 항공재료공학과) ;
  • 하민수 (경기공업대학 정밀계측과) ;
  • 최흥섭 (대한항공, 한국항공기술연구원)
  • Published : 2005.02.01


In this study, stress-displacement analytic solutions are obtained by a shear lag modeling method constructed for the spliced joint area with a splicing gap in the fiber metal laminate (FML). This gap can be empty or be filled with an adhesive material of elastic modulus $E_a$. Two splicing types are considered for spliced shear models, one for spliced in the center metal layer, the other for spliced in the outer metal layer. It is shown that from the viewpoint of the load transfer efficiency and the avoidability of disbond generation due to the shear and axial stresses at the interface between metal layer and composite layer of the gap-front in the spliced area, the center spliced type (k=2) is much preferable to the outer spliced type (k=1).


  1. Vlot, A. and Gunnink, J. W., 2001, Fiber Metal Laminates An Introduction, Kluwer Academic Publishers
  2. Vogelesang, L. B. and Vlot, A., 2000, 'Development of Fibre Metal Laminates for Advanced Aerospace Structures,' Journal of Materials Processing Technology, Vol. 103, pp. 1-5
  3. Asundi, A. and Choi, A. Y. N., 1997, 'Fiber Metal Laminates: An Advanced Material for Future Aircraft,' Journal of Materials Processing Technology, Vol. 63, pp. 384-394
  4. Aerospace Structures and Materials Status, Status Report 2002, National Aerospace Technology, NLR
  5. Staley, J. T. and Hunt, W. H. Jr., 1998, 'Needs of the Aircraft Industry for Aluminum Products,' 12th Annual NCMS Technical Conference, May 4-6, 1998, Orlando, Florida, USA
  6. MIL-HDBK-17-2E, Polymer Matrix Composites, Vol. 2: Materials Properties
  7. MIL-HDBK-17-3E, Polymer Matrix Composites, Vol. 3: Materials usage, Design, And Analysis, Chapter 5 Structural Behavior of Joints
  8. Vinson, J. R. and Chou, T. W., 1975, Composite Materials and Their Use in Structures, John & Sons
  9. Wittenberg, T. C., van Baten, T. J. and de Boer, A., 2001, 'Design of Fiber Metal Laminate Shear Panels for Ultra-High Capacity Aircraft,' Aircraft Design, Vol. 4, pp. 99-113
  10. VIot, A., Vogelesang, L. B. and Vries, T. J., 'Towards Application of Fiber Metal Laminates in Luge Aircraft.'
  11. Remmers, J. J. C. and de Borst, R., 2001, 'Delamination Buckling of Fiber-Metal Laminates,' Composite Science and Technology, Vol. 61, pp. 2207-2213
  12. Hashagen, F. and R. de Borst, 2000, 'Numerical Assessment of Delamination in Fiber Metal Laminates,' Comput. Methods Appl. Mech. Engrg., Vol. 185, pp. 141-159
  13. Yeh, J. R., 1994, 'Fatigue crack growth in FiberMetal Laminates,' Int. J. of Solids Structures, Vol. 32, No. 14, pp. 2063-2075
  14. H. W. Nam, Y. T. Lee, C. K. Jung and K. S. Han, 2003 'Residual Strength of Fiber Metal Laminates After Impact', KSME A, Vol. 27, No.3, pp. 440-449
  15. Nam, H.W., Jung, S. W. and Han, K. S., 2003, 'Effect on Fiber Orientation Angle and Property of Metal Laminate on Impact Behaviors of Fiber Metal Laminates', KSME A, Vol. 27, No.3, pp. 372-380
  16. Nam, H.W., Jung, S.W. and Han, K. S., 2002, 'Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate', KSME A, Vol. 26(2002), No.5, pp. 960-968
  17. Choi, H. S., Roh, H. S., Kang, G H. and Ha, M. S., 2004, 'Study on the Thermo-Mechanical Behaviors of Fiber Metal Laminates Using the Classical Lamination Theory', KSME A, Vol 28, No 4, pp. 394-401
  18. Hult, J. and Rammerstorfer, F. G, 1994, Engineering Mechanics of Fiber Reinforced Polymers and Composite Structures, Springer- Velag
  19. Wu, H. F. and Wu, L. L., 1994, 'MIL-HDBK-5 design allowables for fiber/metal laminates: ARALL2 and ARALL 3,' Journal of Materials Science Letters, Vol. 13, pp. 582-585