DOI QR코드

DOI QR Code

ON THE STABILITY OF THE GENERALIZED G-TYPE FUNCTIONAL EQUATIONS

KIM, GWANG-HUI

  • Published : 2005.01.01

Abstract

In this paper, we obtain the generalization of the Hyers-Ulam-Rassias stability in the sense of Gavruta and Ger of the generalized G-type functional equations of the form $f({{\varphi}(x)) = {\Gamma}(x)f(x)$. As a consequence in the cases ${\varphi}(x) := x+p:= x+1$, we obtain the stability theorem of G-functional equation : the reciprocal functional equation of the double gamma function.

Keywords

Functional equation;Hyers-Ulam stability;Hyers-Ulam­Rassias stability;G-function;double gamma function

References

  1. E. W. Barnes, The theory of the double gamma function, Proc. Roy. Soc. London Ser. A 196 (1901), 265-388
  2. E. W. Barnes, The theory of the G-function, Quart. J. Math. 31 (1899), 264-314
  3. J. Choi and H. M. Srivastava, Certain classes of series involving the Zeta func- tion, J. Math. Anal. Appl. 231 (1999), 91-117 https://doi.org/10.1006/jmaa.1998.6216
  4. P. Gavruta, A Generalization of the Hyers-Ulam-Rassias stability of approxi- mately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436 https://doi.org/10.1006/jmaa.1994.1211
  5. R. Ger, Superstability is not natural, Roczik Nauk.-Dydakt. Prace Mat. 159 (1993), 109-123
  6. D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
  7. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equation in Several Variables, Birkhauser, Basel, 1998
  8. S. M. Jung, On the modified Hyers-Ulam-Rassias stability of the functional equation for gamma function, Mathematica 39(62) (1997), no. 2, 233-237
  9. S. M. Jung, On the stability of G-functional equation, Results Math. 33 (1998), 306-309 https://doi.org/10.1007/BF03322090
  10. K. W. Jun, G. H. Kim and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24 https://doi.org/10.1007/s000100050132
  11. G. H. Kim, On the stability of generalized Gamma functional equation, Internat. J. Math. Math. Sci. 23 (2000), 513-520 https://doi.org/10.1155/S0161171200003598
  12. G. H. Kim, Stability of the G-functional equation, J. Appl. Math. Comput. 23 (2000), 513-520
  13. G. H. Kim, The stability of generalized Gamma functional equation, Nonlinear Studies. 7(1) (2000), 92-96
  14. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300
  15. S. M. Ulam, 'Problems in Modern Mathematics' Chap. VI, Science edit. Wiley, New York, 1960