Development of High-Efficient Small Euel Cells : I. Synthesis of Organic-Inorganic Nanocomposite Electrolyte Membranes

고효율 소형 연료전지의 개발 : I.유기-무기 나노복합 전해질막의 합성

  • Park, Yong-Il (School of Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Moon, Joo-Ho (School of Advanced Materials Science and Engineering, Yonsei University) ;
  • Kim, Hye-Kyung (Samsung Advanced Institute of Technology) ;
  • Kim, Suk-Hwam (School of Materials and System Engineering, Kumoh National Institute of Technology)
  • 박용일 (금오공과대학교 신소재시스템공학부) ;
  • 문주호 (연세대학교 신소재공학부) ;
  • 김혜경 (삼성종합기술원) ;
  • 김석환 (금오공과대학교 신소재시스템공학부)
  • Published : 2005.01.01


New fast proton-conducting organic-inorganic nanocomposite membranes were successfully fabricated using polymer matrix obtained through proper oxidation of thiol ligands in (3-Mercaptopropyl) trimethoxysilane (MPTS) and hydrolysis/condensation reaction of (3-glycidoxypropyl) trimethoxysilane (GPTS). The obtained nanocomposite membranes showed relatively hirh proton-conductivity over $10^{-2}S/cm$ at $ 25^{circ}C$. The proton conductivities of the fabricated composite membranes increased up to $3.6{\times}10^{-1}$ S/cm cm by increasing temperature and relative humidity to $70^{circ}C$ and 100 $100RH\%$. The high proton conductivity of the composites Is due to the proton conducting path through the GPTS-derived 'pseudo-polyethylene oxide 'network in which sulfonic acid ligands work as a proton donor.


  1. G. Nagy, G. A. Gerhardt, A. F. Oke, R. N. Adams, R. B. Moore, M. N. Szentirmay, and C. R. Martin, 'Ion Exchange and Transport of Neurotransmitters in Nafion Films on Conventional and Microelectrode Surfaces,' J. Electroanal. Chem., 189 85-94 (1985)
  2. E. W. Kristensen, W. G. Khur, and R. M. Wightman, 'Temporal Characterization of Perfluorinated Ion-Exchange Coated Microvoltammetric Electrodes for In Vivo Use,' Anal. Chem., 59 1752-57 (1987)
  3. J. Baur, E. W. Kristensen, L. J. May, D. J. Wiedemann, and R. M. Wightman, 'Fast-Scan Voltammetry of Biogenic Amines,' Anal. Chem., 60 1268-72 (1988)
  4. H. Gunasingham and C. Tan, 'Platinum-Dispersed Nafion Film Modified Glassy Carbon as an Electrocatalytic Surface for an Amperometric Glucose Enzyme Electrode,' Analyst, 114 695-98 (1989)
  5. B. Hoyer, T. M. Florence, and G. E. Bately, 'Application of Polymer-Coated Glassy Carbon Electrodes in Anodic Stripping Voltammetry,' Anal. Chem., 59 1608-14 (1987)
  6. D. J. Harrison, R. F. B. Turner, and H. P. Bates, 'Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood,' Anal. Chem., 60 2002-07 (1988)
  7. J. Herranen, J. Kinnunen, B. Mattsson, H. Rinne, F. Sundholm, and L. M. Torell, 'Characterisation of Poly(Ethylene Oxide) Sulfonic Acids,' Solid State Ionics, 80 201-12 (1995)
  8. A. Brodin, B. Mattsson, K. Nilsson, L. M. Torell, and J. Hamara, 'Ionic Configurations in PEO Based Electrolytes Endcapped by $CH_3$-, OH-, and $SO_3$-Groups,' Solid State Ionics, 85 111-20 (1996)
  9. B. Mattsson, A. Brodin, L. M. Torell, H. Rinne, J. Hamara, F. Sundholm, and P. Jacobsson, 'Raman Scattering Investigations of PEO and PPO Sulphonic Acids,' Solid State Ionics, 97 309-14 (1997)
  10. B. Riegel, S. Blittersdorf, W. Kiefer, S. Hofacker, M. MUller, and G. Schottner, 'Kinetic Investigations of Hydrolysis and Condensation of the Glycidoxypropyltrimethoxysilane/Aminopropyltriethoxy-Silane System by Means of FT-Raman Spectroscopy I,' J. Non-Cryst. Solids, 226 76-84 (1998)
  11. Y. G. Hsu and J. H. Huang, 'Model Reaction of Epoxy-Containing Siloxane,' J. Non-Cryst. Solids, 208 259-66 (1996)
  12. G. Philipp and H. Schimidt, 'The Reactivity of $TiO_2$ and $ ZrO_2$ in Organically Modified Silicates,' J. Non-Cryst. Solids, 82 31-6 (1986)
  13. G. Philipp and H. Schimidt, 'New Materials for Contact Lenses Prepared from Si- and Ti-Alkoxides by the Sol-Gel Process,' J. Non-Cryst. Solids, 63 283-92 (1984)
  14. Y.-I. Park and M. Nagai, 'Proton-Conducting Properties of Inorganic-Organic Nanocomposites:Proton Exchange Nanocomposite Membranes Based on 3-Glycidoxypropyltrimethoxysilane and Tetraethylorthosilicate,' J. Electrochem. Soc., 148 [6] A616-23 (2001)
  15. Y.-I. Park and M. Nagai, 'Proton Exchange Nanocomposite Membranes Based on 3-Glycidoxypropyltrimethoxysilane, Silicotungstic Acid and $\alpha$-Zirconium Phosphate Hydrate,' Solid State Ionics, 145 149-60 (2001)
  16. R. C. T. Slade and J. R. Varcoe, 'Proton Conductivity in Siloxane and Ormosil Ionomers Prepared Using Mild Sulfonation Methodologies,' Solid State lonics, 145 127-33 (2001)
  17. P. J. Evans, R. C. T. Slade, J. R. Varcoe, and K. E. Young, 'Realisation of Siloxane Ionomers by Mild Oxidation of Alkylmercaptosiloxanes,' J. Mater. Chem., 9 3015-21 (1999)
  18. K. W. Wilson, A. F. Lee, D. J. Macquarrie, and J. H. Clark, 'Structure and Reactivity of Sol-Gel Sulphonic Acid Silicas,' Appl. Catal. A-Gen., 228 127-33 (2002)
  19. W. M. Van Rhijin, D. E. De Vos, B. F. Sels, W. D. Bossaert, and P. A. Jacobs, 'Sulfonic Acid Functionalised Ordered Mesoporous Materials as Catalysts for Condensation and Esterification Reactions,' Chem. Commun., 317-18 (1998)
  20. Y. Abe, 'Fast Proton Conductions in Glasses,' Proceedings of XVII International Congress on Glasses, 1 105 (1995)