The Fretting Fatigue Behavior of Ti-6Al-4V Alloy on Change of Microstructure

Ti-6Al-4V 합금의 조직 변화에 따른 프레팅 피로거동

  • 배용탁 (영남대학교 대학원 기계공학부) ;
  • 최성종 (영남대학교 기계공학부) ;
  • 권재도 (영남대학교 기계공학부)
  • Published : 2005.04.01


The effect of microstructure on mechanical behavior for Ti-6Al-4V alloy was studied. Two different kinds of specimens are prepared using heat treatments (rolled plate, $1050^{\circ}C)$ in order to Produce different microstructures. Various kinds of mechanical tests such as hardness, tensile, fatigue and fretting fatigue tests are performed for evaluation of mechanical properties with the changes of microstructures. Through these tests, the following conclusions are observed: 1) Microstructures are observed as equiaxed and $widmanst{\ddot{a}}ten$ microstructures respectively. 2) Impact absorbed energy is superior for the equiaxed microstructure, and the hardness and tensile strength are superior for the $widmanst{\ddot{a}}ten$ microstructure. 3) The fatigue endurance of $widmanst{\ddot{a}}ten$ microstritcture shows higher value than that of the equiaxed microstructure. 4) The fatigue endurance in fretting condition was reduced about $50{\%}$ from that of the non-fretting condition.


Ti-6Al-4V Alloy;Equiaxed Microstructure;Lamellar Micro-structure;Plain Fatigue Limit;Fretting Fatigue Limit


  1. Fraker, A. C., Ruff, W., Sung P., Van Orden, A. C. and Speck, K. M., 1981, 'Surface Propagation and Corrosion Behavior of Titanium Alloys for Surgical Implants,' ASTM STP 796, pp. 206-219
  2. Smelaser, R. E., Swedlow, J. L. and Williams, J. C., 1970, 'Analysis of Local Stresses and Strains in Ti-6Al-4V Widmanstatten ${\alpha}+{\beta}$ Microstructures,' ASTM STP 651, pp. 200-245
  3. Peters, M., Gysler, A. and Lutjering, G., 1984, 'Influence of Texture on Fatigue Properties of Ti-6Al-4V,' Metall. Trans., Vol. 15A, pp. 1597-1605
  4. Seo, D. Y. and Han, J. G., 1990, 'The Changes of Microstructure and Fatigue Properties by Thermomechanical Processing for Ti-6Al-4V,' J. of the Korean Inst. of Metals, Vol. 28, No. 1, pp. 23-31
  5. Kang, H. G. and Cho, H. K., 1992, 'Microstructural Alteration of a Phase Associated with Solution Treatment and Cooling Condition in Ti-6Al-4V Alloy,' J. of the Korean Inst. of Metals, Vol. 30, No. 11, pp. 1326-1334
  6. Kwon, J. D., Bae, Y. T. and Choi, S. J., 2003, 'The Effect of Microstructure on Mechanical Behavior for Titanium Alloy (Ti-6Al-4V),' Int. J. of Modern Physics B, Vol. 17, No. 8&9, pp. 1297-1303
  7. Kwon, J. D., Choi, S. J. and Bae, Y. T., 2004, 'A Study on Fretting Fatigue Behavior of Degraded 1Cr-0.5Mo Steel,' Key Engineering Materials, Vols. 261-263, pp. 1221-1226
  8. Kwon, J. D., Sung, S. S. and Choi, S. J., 'A study on Material Degradation and Fretting Fatigue Behavior,' 2001, J. of the Korean Inst. of Metals, Vol. 25, No.8, pp. 1278-1293
  9. Kwon, J. D., Choi, S. J., Kim, K. S., Bae, Y. T., 2003, 'The Effect of Degradation on the Fretting Fatigue for 1Cr-0.5Mo Steel,' Trans. of MSME (A), Vol. 27, No. 11, pp. 1979-1985
  10. Imam, M. A., Fraker, A. C., Harris, J. S. and Gilmore, C. M., 1981, 'Influence of Heat Treatment on the Fatigue Lives of Ti-6Al-4V and Ti-4.5Al-5Mo-1.5Cr,
  11. Brunski, J. B., Moccia, A. F., Jr., Pollack, S. R., Korostoff, E. and Trachtenberg, D., 1981, 'Investigation of Surface of Retrieved End Osseous Dental Implants of Commercially Pure Titanium,' ASTMSTP 796, pp. 189-205
  12. Thompson, A. W., 1999, 'Relations Between Microstructure and Fatigue Properties of Alpha-Beta Titanium Alloys', in Fatigue Behavior of Titanium Alloys, ed. Boyer, R. R., Eylon, D., and Lutjering, G., TMS, pp. 23-30
  13. ASTM, 1995, 'Conducting Constant Amplitude Axial Fatigue Tests of Metallic Materials' ASTM E 466-82, pp.470-474
  14. K. Endo, 1981, 'Practical Observations of Initiation and Propagation of Fretting Fatigue Cracks,' Fretting Fatigue, ed. R. B. Waterhouse, Applied Science Publishers Ltd, pp. 127-141