DOI QR코드

DOI QR Code

STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH JENSEN TYPE

  • LEE, YOUNG-WHAN (Department of Computer and Information Security, Daejeon University)
  • Published : 2005.02.01

Abstract

In this paper we solve a generalized quadratic Jensen type functional equation $m^2 f (\frac{x+y+z}{m}) + f(x) + f(y) + f(z) =n^2 [f(\frac{x+y}{n}) +f(\frac{y+z}{n}) +f(\frac{z+x}{n})]$ and prove the stability of this equation in the spirit of Hyers, Ulam, Rassias, and Gavruta.

References

  1. G. L. Forti, Hyers- Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 146-190
  2. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436 https://doi.org/10.1006/jmaa.1994.1211
  3. D. H. Hyers, On the stability of the linear functional equation, Proc, Natl. Acad. Sci. USA 21 (1941), 222-224
  4. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston/Basel/Berlin, 1998
  5. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), 125-153 https://doi.org/10.1007/BF01830975
  6. K. W. Jun, G. H. Kim, and Y. W. Lee, Stability of generalized gamma and beta functional equations, Aequationes Math. 60 (2000), 15-24 https://doi.org/10.1007/s000100050132
  7. S. M. Jung, Huers-Ulam-Rassias stability of functional equations, Dynam. Systems Appl. 6 (1997), 541-566
  8. S. M. Jung, Hyers- Uuim-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143
  9. S. M. Jung, On the Hyers- Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137 https://doi.org/10.1006/jmaa.1998.5916
  10. S. M. Jung, On the Hyers- Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl. 232 (1999), 384-393 https://doi.org/10.1006/jmaa.1999.6282
  11. G. H. Kim, On the stability of the quadratic mapping in normal space, IJMMs 25 (2001), no. 4, 217-229
  12. E. H. Lee, Y. W. Lee, and S. H. Park, Stability of a Jensen type functional Equations, J. Appl. Math. Comput. 10 (2002), no. 1-2, 283-295
  13. S. H. Lee and Y. W. Lee, Stability of a Popoviciu functional Equations, Nonlinear Funct. Anal. Appl. 7 (2002), no. 3, 413-429
  14. Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's Equation, J. Math. Anal. Appl. 238 (1999), 305-315 https://doi.org/10.1006/jmaa.1999.6546
  15. Y. W. Lee, On the stability of a quadratic Jensen type functional Equation, J. Math. Anal. Appl. 270 (2002), 590-601 https://doi.org/10.1016/S0022-247X(02)00093-8
  16. Y. W. Lee, The stability of derivations on Banach algebras, Bull. Inst. Math. Acad. Sinica 28 (2000), 113-116
  17. Th. M. Rassias, On a problem of S. M Ulam and the asymptotic stability of the Cauchy functional equation with applications, General Inequalities 7, MFO, Oberwolfach, Birkhiiuser Verlag, Basel ISNM 123 (1997), 297-309
  18. Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), 23-130 https://doi.org/10.1023/A:1006499223572
  19. Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284 https://doi.org/10.1006/jmaa.2000.7046
  20. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300
  21. Th. M. Rassias, On the stability of the quadratic functional equation and its applications, Studia, Univ. Babes-Bolyai XLIII 3 (1998), 89-124
  22. Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378 https://doi.org/10.1006/jmaa.2000.6788
  23. Th. M. Rassias and P. Semrl, On the behavior of mapping that do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993
  24. T. Trif, Hyers- Ulam-Rassias stability of a Jensen type functional Equation, J. Math. Anal. Appl. 250 (2000), 579-588 https://doi.org/10.1006/jmaa.2000.6995
  25. T. Trif, Hyers-Ulam-Rassias stability of a quadratic functional equation, Bull. Korean Math. Soc. 40 (2003), 253-267 https://doi.org/10.4134/BKMS.2003.40.2.253
  26. S. M. Ulam, Problems in Modern Mathematics, Proc. Chap. VI. Wiley. New York, 1964

Cited by

  1. Elementary remarks on Ulam–Hyers stability of linear functional equations vol.328, pp.1, 2007, https://doi.org/10.1016/j.jmaa.2006.04.079
  2. Popoviciu Type Equations on Cylinders vol.67, pp.3-4, 2015, https://doi.org/10.1007/s00025-015-0440-8
  3. On a direct method for proving the Hyers–Ulam stability of functional equations vol.372, pp.1, 2010, https://doi.org/10.1016/j.jmaa.2010.06.056
  4. On the Generalized Hyers-Ulam Stability of ann-Dimensional Quadratic and Additive Type Functional Equation vol.2014, 2014, https://doi.org/10.1155/2014/184680
  5. On extension of the solutions of the Popoviciu type equations on groups vol.147, pp.2, 2015, https://doi.org/10.1007/s10474-015-0512-y
  6. Ulam's stability of a generalization of the Fréchet functional equation vol.442, pp.2, 2016, https://doi.org/10.1016/j.jmaa.2016.04.074