DOI QR코드

DOI QR Code

MOTION OF VORTEX FILAMENTS IN 3-MANIFOLDS

  • PAK, HEE-CHUL (Department of Applied Mathematics, Dankook University)
  • Published : 2005.02.01

Abstract

In this paper, the visco-Da-Rios equation; (0.1) ($$\frac{{\partial}{\gamma}}{{\partial}t}=\frac{{\partial}{\gamma}}{{\partial}s}{\bigwedge}\frac{D}{ds}\frac{{\partial}{\gamma}}{{\partial}s}+{\nu}\frac{{\partial}{\gamma}}{{\partial}s}$$) is investigated on 3-dimensional complete orientable Riemannian manifolds. The global existence of solution is discussed by trans-forming (0.1) into a cubic nonlinear Schrodinger equation for complete orient able Riemannian 3-manifolds of constant curvature.

References

  1. T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, 1998
  2. J. Bourgain, Global solutions of nonlinear Shriidinqer equations, Amer. Math. Soc. Colloq. Publ. 46 (1999)
  3. T. C. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford University Press Inc., New York, 1998
  4. N. Chang, J. Shatah, and K. Uhlenbeck, Shrodinger maps, Commun. Pure. Appl. Anal. 53 (2000), 590-602 https://doi.org/10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R
  5. S. Gallot, D. HuIi, and J. Lfontaine, Riemannian Geometry, 2nd edition, Springer-Verlag, 1993
  6. H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477-485 https://doi.org/10.1017/S0022112072002307
  7. J. Jost, Riemannian Geometry and Geometric Analysis, Springer, 1995
  8. H. C. Pak, Flow via binormal in 3-manifolds, Preprint
  9. J. Langer and R. PerIine, Geometric Realizations of Fordy-Kulish nonlinear Schrddinqer systems, Pacific J. Math. 195 (2000), 157-178 https://doi.org/10.2140/pjm.2000.195.157
  10. M. Spivak, A Comprehensive Introduction to Riemannian Geometry, vol. 2, 2nd edition, Publish or Perish, Inc., Boston, 1979
  11. C. L. Terng and K. Uhlenbeck, Schrodinqer flows on Grassmannians, Preprint math. DG/9901086