DOI QR코드

DOI QR Code

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 OF A COMPLEX PROJECTIVE SPACE IN TERMS OF THE JACOBI OPERATOR

  • HER, JONG-IM (Department of Mathematics, Chosun University) ;
  • KI, U-HANG (Department of Mathematics, Kyungpook National University) ;
  • LEE, SEONG-BAEK (Department of Mathematics, Chosun University)
  • 발행 : 2005.02.01

초록

In this paper, we characterize some semi-invariant sub-manifolds of codimension 3 with almost contact metric structure ($\phi$, $\xi$, g) in a complex projective space $CP^{n+1}$ in terms of the structure tensor $\phi$, the Ricci tensor S and the Jacobi operator $R_\xi$ with respect to the structure vector $\xi$.

참고문헌

  1. A. Bejancu, CR-submanifolds of a Kohler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142
  2. D. E. Blair, G. D. Ludden, and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27 (1976), 313-319 https://doi.org/10.2996/kmj/1138847256
  3. T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499 https://doi.org/10.2307/1998460
  4. J. T. Cho and U. H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167 https://doi.org/10.1023/A:1006585128386
  5. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 3 (1971), 333-340
  6. U. H. Ki and H. J. Kim, Semi-invariant submanifolds with lift-flat normal connection in a complex projective space, Kyungpook Math. J. 40 (2000), 185-194
  7. U. H. Ki and H. Song, Jacobi operators on a semi-invariant submanifold of codimension 3 in a complex projective space, Nihonkai Math. J. 14 (2003), 116
  8. U. H. Ki, H. Song, and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math. J. 11 (2000), 57-86
  9. R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press (1998(T.E. Cecil and S.S. Chern, eds.)), 233-305
  10. M. Okumura, Codimension reduction problem for real submanifolds of complex projective space, Colloq. Math. Soc. Janos Bolyai 56 (1989), 574-585
  11. M. Okumura, Normal curvature and real submanifold of the complex projective space, Geom. Dedicata 7 (1978), 509-517
  12. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1973), 355-364 https://doi.org/10.2307/1998631
  13. H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25 (2001), 279-298 https://doi.org/10.21099/tkbjm/1496164288
  14. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19 (1973), 495-506
  15. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516 https://doi.org/10.2969/jmsj/02710043
  16. Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sugaku 16 (1964), 34-61
  17. K. Yano and U. H. Ki, On (f, g, u, v, w, ${\lambda}\;{\mu}\;{\nu}$)-structure satisfying ${\lambda}^2+{\mu}^2+{\nu}^2$ = 1, Kodai Math. Sem. Rep. 29 (1978), 285-307 https://doi.org/10.2996/kmj/1138833653
  18. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhauser (1983)