DOI QR코드

DOI QR Code

SPACES OF CONJUGATION-EQUIVARIANT FULL HOLOMORPHIC MAPS

  • Published : 2005.02.01

Abstract

Let $RRat_k$ ($CP^n$) denote the space of basepoint-preserving conjugation-equivariant holomorphic maps of degree k from $S^2$ to $CP^n$. A map f ; $S^2 {\to}CP^n$ is said to be full if its image does not lie in any proper projective subspace of $CP^n$. Let $RF_k(CP^n)$ denote the subspace of $RRat_k(CP^n)$ consisting offull maps. In this paper we determine $H{\ast}(RF_k(CP^2); Z/p)$ for all primes p.

References

  1. Y. Kamiyama, Remarks on spaces of real rational functions, Rocky Mountain J. Math., to appear
  2. R. I. Brockett, Some geometric questions in the theory of linear systems, IEEE Trans. Automat. Control 21 (1976), 449-455 https://doi.org/10.1109/TAC.1976.1101301
  3. F. R. Cohen, R. L. Cohen, B. M. Mann, and R. J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163-221 https://doi.org/10.1007/BF02398886
  4. T. A. Crawford, Full holomorphic maps from the Riemann sphere to complex projective spaces, J. Differential Geom. 38 (1993), 161-189 https://doi.org/10.4310/jdg/1214454099
  5. Y. Kamiyama, Relationship between polynomials with multiple roots and rational functions with common roots, Math. Scand., to appear
  6. J. W. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Stud. 76 (1974)
  7. G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72 https://doi.org/10.1007/BF02392088