연속음성인식의 음향모델 출력을 이용한 뉴스 데이터 분석

News Data Analysis Using Acoustic Model Output of Continuous Speech Recognition

  • 이경록 (남부대학교 디지털정보학과)
  • 발행 : 2006.10.28

초록

본 논문에서는 연속음성인식의 음향모델 출력을 이용하여 뉴스 데이터를 분석하였다. 실험에 사용된 뉴스 데이터베이스는 2,093개의 기사로 구성되어 있다. 기존의 한국어 연속음성인식은 열악한 언어모델 때문에 낮은 인식성능을 보여 뉴스 데이터 분석에 적합하지 않다. 본 논문에서는 이를 보완하기 위해서 상대적으로 견인한 음향모델의 인식결과를 후처리하여 핵심어 정보 파일을 만들었다. 음향모델의 출력레벨 문턱치가 100일 때 전체 인식대상 형태소의 86.9%가 인식되었다. 동일한 조건에 길이정보 기반 정규화를 적용하였더니 81.25%가 인식되었다. 정규화의 목적은 긴 길이의 형태소를 보상하는 것이다. 실험결과, 인식대상 형태소 인식률은 75.13%였다. 그리고 5,040MB의 뉴스 데이터에서 314MB의 핵심어 정보 파일이 만들어졌다. 이것은 절대적인 정보량이 93.8% 감소한 것이다.

키워드

뉴스 데이터 분석;형태소 기반 연속음성인식