DOI QR코드

DOI QR Code

Chemical Bonding Nature and Mesoporous Structure of Nickel Intercalated Montmorillonite Clay

  • Park, Hye-Mi (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry,Ewha Womans University) ;
  • Kim, Tae-Woo (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry,Ewha Womans University) ;
  • Hwang, Seong-Ju (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry,Ewha Womans University) ;
  • Choy, Jin-Ho (Center for Intelligent Nano-Bio Materials (CINBM), Division of Nano Sciences and Department of Chemistry,Ewha Womans University)
  • Published : 2006.09.20

Abstract

Mesoporous nickel intercalated aluminosilicate nanohybrid has been synthesized through a recombination reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and aqueous nickel acetate solution. According to powder X-ray diffraction and field emission-scanning electron microscopic analyses, the intercalation of nickel species expands significantly the basal spacing of the host montmorillonite clay and the crystallites of the intercalation compound are assembled to form a house-of-card structure. $N_2$ adsorption-desorption isotherm measurements with BJH pore analyses clearly demonstrated that the porosity of the intercalate originates mainly from mesopores (diameter $\sim50\;\AA$) formed by the house-of-card type stacking of clay crystallites. From FT-IR and X-ray absorption spectroscopic analyses, it becomes certain that intercalated nickel ion is stabilized in an isolated $NiO_6$ octahedral unit. The present mesoporous intercalation compound is expected to be applicable as efficient catalysts or absorbents.

Keywords

References

  1. Jones, S. L. Catal. Today 1987, 12, 209
  2. Handbook of Layered Materials; Auerbach, S. M.; Carrado, K. A.; Dutta, P. K., Eds: Marcel Dekker: New York, 2004
  3. Comprehensive Supramolecular Chemistry; Atwood, J. L.; Macnicol, J. E. D.; Vogtle, F., Eds.; Pergamon: Oxford, 1996; Vol. 7
  4. Choy, J. H.; Jung, H.; Han, Y. S.; Yoon, J. B.; Shul, Y. G.; Kim, H. J. Chem. Mater. 2002, 14, 3823 https://doi.org/10.1021/cm020201x
  5. Bornholdt, K.; Corker, J. M.; Evans, J.; Rummey, J. M. Inorg. Chem. 1991, 30, 2 https://doi.org/10.1021/ic00001a002
  6. Drljaca, A.; Anderson, J. R.; Spiccia, L.; Turney, T. W. Inorg. Chem. 1992, 31, 4894 https://doi.org/10.1021/ic00049a033
  7. Burch, R.; Warburton, C. I. Appl. Catal. 1987, 33, 395 https://doi.org/10.1016/S0166-9834(00)83070-5
  8. Bartley, G. J. J.; Burch, E. Appl. Catal. 1985, 19, 175 https://doi.org/10.1016/S0166-9834(00)82679-2
  9. Sterte, J. P. Clays Clay Miner. 1986, 34, 658 https://doi.org/10.1346/CCMN.1986.0340606
  10. Hur, S. G.; Kim, T. W.; Hwang, S.-J.; Hwang, S. H.; Yang, J. H.; Choy, J.-H. J. Phys. Chem. B 2006, 110, 1599 https://doi.org/10.1021/jp0543633
  11. Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788 https://doi.org/10.1021/ja047433c
  12. Speiser, F.; Braunstein, P.; Saussine, L. Acc. Chem. Res. 2005, 38, 784 https://doi.org/10.1021/ar050040d
  13. Hu, W. K.; Noreus, D. Chem. Mater. 2003, 15, 974, and the references therein https://doi.org/10.1021/cm021312z
  14. Handbook of Inorganic Electrochromic Materials; Granqvist, C. G., Ed.; Elsevier: Amsterdam, 1995
  15. Chang, J. S.; Ryu, J. O.; Lee, J. M.; Park, S. E.; Hong, D. Y.; Jhung, S. H. Bull. Kor. Chem. Soc. 2005, 26, 1512 https://doi.org/10.5012/bkcs.2005.26.10.1512
  16. Pae, Y. I.; Bae, M. H.; Park, W. C.; Sohn, J. R. Bull. Kor. Chem. Soc. 2004, 25, 1881 https://doi.org/10.5012/bkcs.2004.25.12.1881
  17. Ohtsuka, K.; Suda, M.; Ono, M. Bull. Chem. Soc. Jpn. 1988, 61, 815 https://doi.org/10.1246/bcsj.61.815
  18. Ohtsuka, K.; Suda, M.; Tsunoda, M.; Ono, M. Chem. Mater. 1990, 2, 511 https://doi.org/10.1021/cm00011a009
  19. Gupta, G. C.; Malik, W. U. Clays Clay Miner. 1969, 17, 233 https://doi.org/10.1346/CCMN.1969.0170406
  20. Yamanaka, S.; Brindley, G. W. Clays Clay Miner. 1978, 26, 21 https://doi.org/10.1346/CCMN.1978.0260102
  21. Ohtsuka, K.; Hayashi, Y. Chem. Mater. 2001, 13, 704 https://doi.org/10.1021/cm0004329
  22. Yuan, P.; He, H.; Bergaya, F.; Wu, D.; Zhou, Q.; Zhu, J. Micropor. Mesopor. Mater. 2006, 88, 8 https://doi.org/10.1016/j.micromeso.2005.08.022
  23. Choy, J. H.; Hwang, S. J.; Park, N. G. J. Am. Chem. Soc. 1997, 119, 1624 https://doi.org/10.1021/ja961993x
  24. Choy, J. H.; Kim, Y. I.; Hwang, S. J. J. Phys. Chem. B 1998, 102, 9191 https://doi.org/10.1021/jp982402n
  25. Choy, J. H.; Kim, Y. I.; Hwang, S. J.; Huong, P. V. J. Phys. Chem. B 2000, 104, 7273 https://doi.org/10.1021/jp000490h
  26. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603 https://doi.org/10.1351/pac198557040603
  27. Carrado, K. A.; Csenesits, R.; Thiyagarajan, P.; Seifert, S.; Macha, S. M.; Harwood, J. S. J. Mater. Chem. 2002, 12, 3228 https://doi.org/10.1039/b204180b

Cited by

  1. Soft Chemical Dehydration Route to Carbon Coating of Metal Oxides: Its Application for Spinel Lithium Manganate vol.111, pp.30, 2007, https://doi.org/10.1021/jp0725230
  2. Potassium polytitanates intercalated with nickel ions and their thermal transformations vol.56, pp.11, 2011, https://doi.org/10.1134/S0036023611110088