Inhibitory Effect of Ginsenoside Rg5 and Its Metabolite Ginsenoside Rh3 in an Oxazolone-Induced Mouse Chronic Dermatitis Model

  • Published : 2006.08.01


The effect of a main constituent ginsenoside Rg5 isolated from red ginseng and its metabolite ginsenoside Rh3 in a chronic dermatitis model was investigated. Ginsenosides Rg5 and Rh3 suppressed swelling of oxazolone-induced mouse ear contact dermatitis. These ginsenosides also reduced mRNA expressions of cyclooxygenase-2, interleukin $(IL)-1{\beta}$, tumor necrosis factor $(TNF)-{\alpha}$ and interferon $(IFN)-{\gamma}$. The inhibition of ginsenoside Rh3 was more potent than that of ginsenoside Rg5. These findings suggest that ginsenoside Rh3 metabolized from ginsenoside Rg5 may improve chronic dermatitis or psoriasis by the regulation of $IL-1{\beta}$ and $TNF-{\alpha}$ produced by macrophage cells and of $IFN-{\gamma}$ produced by Th cells.


  1. Akao, T., Kida, H., Kanaoka, M., Hattori, M., and Kobashi, K., Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol., 50, 1155-1160 (1988)
  2. Austin, L. M., Ozawa, M., Kikuchi, T., Walters, I. B., and Krueger, J. G., The majority of epidermal T cells in psoriasis vulgaris lesions can produce type 1 cytokines, interferon-r, interleukin-2, and tumor necrosis factor-${\alpha}$, defining Tc1 (cytotoxic T lymphocyte) and Th1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol., 113, 752-759 (1999)
  3. Bae, E. A., Han, M. J., Choo, M. K., Park, S. Y., and Kim, D.-H., Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull., 25, 58-63 (2002)
  4. Bielory, L., Complementary and alternative interventions in asthma, allergy, and immunology. Ann. Allergy Asthma Immunol., 93(2 Suppl 1): S45-54 (2004)
  5. Choo, M. K., Park, E. K., Han, M. J., and Kim, D.- H., Antiallergic activity of ginseng and its ginsenosides. Planta Med., 69, 518-522 (2003)
  6. Fujii, Y., Takeuchi, H., Tanaka, K., Sakuma, S., Ohkubo, Y., and Mutoh, S., Effects of FK-506 (tacrolimus hydrate) on chronic oxazolone-induced dermatitis in rats. Eur. J. Pharmacol., 456, 115-121 (2002)
  7. Hernandez, G. L., Volpert, O. V., Iniguez, M. A., Lorenzo, E., Martinez-Martinez, S., Grau, R., Fresno, M., and Redondo, J. M., Selective inhibition of vascular endothelial growth factormediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med., 193, 607-620 (2001)
  8. Keum, Y. S., Han, S. S., Chun, K. S., Park, K. K., Park, J. H., Lee, S. K., and Surh, Y. J., Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase- 2 expression, NF-kappaB activation and tumor promotion. Mutat. Res., 523-524, 75-85 (2003)
  9. Kim, D. S., Baek, N. I., Park, J. D., Lee, Y. H., Jeong, S. Y., Lee, C. B., Kim, S. I., Preparation and structure determination of a new glycoside, (20E)-ginsenoside Rh3, and its isomer from diol-type ginseng saponins. Yakhak Hoeji, 39, 85-93 (1995)
  10. Kitagawa, I., Yoshikawa, M., Yoshihara, M., Hayashi, T., and Taniyama, T., Chemical studies of crude drugs (1). Constituents of Ginseng radix rubra. Yakugaku Zasshi, 103, 612- 622 (1983)
  11. Kown, S. W., Han, S. B., Park, I. H., Kim, J. M., Park, M. K., and Park, J. H., Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatogr. A., 921, 335-339 (2001)
  12. Mochizuki, M., Yoo, Y. C., Matsuzawa, K., Sato, K., Saiki, I., Tono-oka, S., Samukawa, K., and Azuma, I., Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside Rb2, 20(R)- and 20(S)-ginsenoside Rg3 of Red ginseng. Biol. Pharm. Bull., 18, 1197-1202 (1995)
  13. Nicoloff, B. J., The cytokine network in psoriasis. Arch. Dermatol., 127, 871-884 (1991)
  14. Park, E. K., Choo, M. K., Han, M. J., and Kim, D. H., Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immunol., 133, 113-120 (2003)
  15. Park, E. K., Choo, M. K., Kim, E. J., Han, M. J., and Kim, D. H., Antiallergic activity of ginsenoside Rh2. Biol. Pharm. Bull., 26, 1581-1584 (2003)
  16. Sakuma, S., Higashi, Y., Sato, N., Sasakawa, T., Sengoku, T., Ohkubo, Y., and Amaya, T., Goto T. Tacrolimus suppressed the production of cytokines involved in atopic dermatitis by direct stimulation of human PBMC system. (Comparison with steroids). Int. Immunopharmacol., 1, 1219-1226 (2001)
  17. Schafer-Korting, M., Schmid, M. H., and Korting, H. C., Topical glucocorticoids with improved risk-benefit ratio. Rationale of a new concept. Drug Safety, 14, 375-385 (1996)
  18. Shin, Y.W., Bae, E.A., Kim, S.S., Lee, Y.C., and Kim, D.H., Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int. Immunopharmacol., 5, 1183-91 (2005)
  19. Simons, F.E., The antiallergic effects of antihistamines (H1- receptor antagonists). J. Allergy Clin. Immunol., 90, 705-715 (1992)
  20. Tanaka, N., Tanaka, O., and Shibata, S., Chemical studies on the oriental plant drugs. XXVIII. Saponins and sapogenins of ginseng; Stereochemistry of sapogenin of ginsenoside Rb1, Rb2 and Rc. Chem. Pharm. Bull., 20, 1212-1216 (1972)
  21. Wakabayashi, C., Hasegawa, H., Murata, J., and Saiki, I., In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res., 9, 411-417 (1998)
  22. Wu, J. Y., Gardner, B. H., Murrphy, C. I., Seals, J. R., Kensil, C. R., Recchia, J., Beltz, G. A., Newman, G. W., and Newman, M. J., Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-1 vaccine. J. Immunol., 148, 1519-1525 (1992)