Identification of Characteristic Aroma-active Compounds from Burnt Beef Reaction Flavor Manufactured by Extrusion

압출성형에 의해 제조된 구운 쇠고기 반응향의 특징적인 향기성분 동정

  • Kim, Ki-Won (Department of Food Engineering, Dankook University) ;
  • Seo, Won-Ho (Department of Food Engineering, Dankook University) ;
  • Baek, Hyung-Hee (Department of Food Engineering, Dankook University)
  • 김기원 (단국대학교 식품공학과) ;
  • 서원호 (단국대학교 식품공학과) ;
  • 백형희 (단국대학교 식품공학과)
  • Published : 2006.10.01

Abstract

To characterize aroma properties of burnt beef reaction flavor manufactured by extrusion, volatile flavor compounds and aroma-active compounds were analyzed by simultaneous steam distillation and solvent extraction (SDE)-gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Hydrolyzed vegetable protein (HVP) was successfully extruded with precursors (glucose, cystine, furaneol, thiamin, methionine, garlic powder, and lecithin) at $160^{\circ}C$, screw speed of 45 rpm, and feed rate of 38 kg/hr. Sixty eight volatile flavor compounds were found in burnt beef reaction flavor. The number of volatile flavor compounds decreased significantly when HVP was extruded either with furaneol-free precursors or without precursors. Twenty seven aroma-active compounds were detected in burnt beef reaction flavor. Of these, methional and 2-methyl-3-furanthiol were the most intense aroma-active compounds. It was suggested that furaneol played an important role in the formation of burnt beef reaction flavor.

Keywords

flavor;aroma-active compound;extrusion;reaction flavor;volatile flavor compound

References

  1. Zhang Y, Ho CT. Formation of meatlike aroma compounds from thermal reaction of inosine 5-monophosphate with cysteine and glutathione. J. Agric. Food Chem. 39: 1145-1148 (1991) https://doi.org/10.1021/jf00006a031
  2. Bolton TA, Reineccius GA, Liardon R, Ba TH. Role of cysteine in the formation of 2-methyl-3-furanthiol in a thiamine-cysteine model system. pp. 17-71. In: Thermally Generated Flavors. Maillard, Microwave. and Extrusion Processes. Parliment TH. Morello MJ, McGorrin RJ (eds). ACS Symposium series 543, American Chemical Society. Washington DC, USA (1994)
  3. van den Ouweland GAM, Peer HG. Components contributing to beef flavor. Volatile compounds produced by the reaction of 4-hydroxy-5methyl-3(2H)-furanone and its thio analog with hydrogen sulfide. J. Agric. Food Chem. 23: 501-505 (1975) https://doi.org/10.1021/jf60199a045
  4. van den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 11 :463-471 (1963) https://doi.org/10.1016/S0021-9673(01)80947-X
  5. Manley CH, Ahmedi S. The development of process flavors. Trends Food Sci. Technol. 6: 46-51 (1995) https://doi.org/10.1016/S0924-2244(00)88942-6
  6. Camire ME, Belbez EO, Flavor formation during extrusion cooking. Cereal Foods World 41:734-736 (1996)
  7. Mottram DS, Whitfield FB. Maillard-lipid interactions in nonaqueous systems: Volatiles from the reaction of' cysteine and ribose with phosphatidylcholine. J. Agric. Food Chem. 43: 1302-1306 (1995) https://doi.org/10.1021/jf00053a033
  8. Parliment TH. Morello MJ, McGorrin RJ. Heterocyclic aroma compounds precursors. pp. 17-71. In: Chemistry of Heterocyclic Compounds in Flavors and Aromas. Vernin G (ed). Ellis Horwood Limited, West Sussex, England (1982)
  9. Umano K, Hagi Y, Nakahara K, Shyoji A, Shibamoto T. Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system. J. Agric. Food Chem. 43: 2212-2218 (1995) https://doi.org/10.1021/jf00056a046
  10. Mottram DS, Whitfield FB. Volatile compounds from the reaction of cysteine, ribose, and phospholipid in low-moisture systems. J. Agric. Food Chem. 43: 984-988 (1995) https://doi.org/10.1021/jf00052a027
  11. Maga JA. Furans in food. CRC Crit. Rev. Food Sci. Nutr. 11: 355-400 (1979) https://doi.org/10.1080/10408397909527268
  12. Guntert M. Bruning J, Emberger R, Hopper R, Kopel M. Surburg H, Werkhof P. Thermally degraded thiamin. A potent source of interesting flavor compounds. pp, 140-163. In: Flavor Precursors: Thermal and Enzymatic Conversions, Teranishi R, Takeoka GR, Guntert M (eds). ACS Symposium Series 490. American Chemical Society. Washington DC USA ( 1992)
  13. Whitfield FB. Mottram DS. Brock S, Puckey DJ, Salter LJ. Effect of phospholipid on the formation of volatile heterocyclic compounds in heated aqueous solutions of amino acids and ribose. J. Sci. Food Agric. 42: 261-272 (1988) https://doi.org/10.1002/jsfa.2740420309
  14. Baek HH, Kim CJ, Ahn BH, Nam HS, Cadwallader KR. Aroma extract dilution analysis of a beeflike process flavor from extruded enzyme-hydrolyzed soybean protein. J. Agric. Food Chem. 49: 790-793 (2000) https://doi.org/10.1021/jf000609j
  15. Izzo HV, Ho CT, Ammonia affects Maillard chemistry of an extruded autolyzed yeast extract: Pyrazine aroma generation and brown color formation. J. Food Sci. 57: 657-659 (1992) https://doi.org/10.1111/j.1365-2621.1992.tb08064.x
  16. Kim KW, Baek HH. Development of a burnt beef flavor by reaction flavor technology. Korean J. Food Sci. Technol. 35: 1045-1052 (2003)
  17. Hofmann T. Schieberle P. Evaluation of' the key odorants in a thermally treated solution of ribose and cysteine by aroma extract dilution techniques. J. Agric. Food Chem. 43: 2187-2194 (1995) https://doi.org/10.1021/jf00056a042
  18. Manley CH. Process flavor. 2nd ed, pp. 139-154. In: Source Book of Flavors. Reineccius GR (ed.) Chapman & Hall, New York. NY, USA (1994)
  19. Hurrell RF. Maillard reaction in flavor. pp. 399-423. In: Food Flavors, Part A. Introduction. Morton ID, MacLeod AJ (eds). Elsevier Scientific Publishing Compony. New York, USA (1982)
  20. de Roos KB. Meat flavor generation from cysteine and sugars. pp. 139-154. In: Flavor Precursors: Thermal and Enzymatic Conversions. Teranishi R, Takeoka GR, Guntert M (eds). ACS Symposium Series 490, American Chemical Society, Washington DC, USA (1992)
  21. Ames JM, MacLeod G. Volatile components of' a yeast extract composition. J. Food Sci. 50: 125-135 (1985) https://doi.org/10.1111/j.1365-2621.1985.tb13292.x
  22. Hirai C, Herz KO, Pokorny J, Chang SS, Isolation and identification of volatile flavor compounds in boiled beef J. Food Sci. 38: 393-397 (1973) https://doi.org/10.1111/j.1365-2621.1973.tb01438.x
  23. Farmer LJ, Mottram DS, Whitfield FB. Volatile compounds produced in Maillard reactions involving cysteine, ribose and phospholipid. J. Sci. Food Agric. 49: 347-368 (1989) https://doi.org/10.1002/jsfa.2740490311
  24. Grosch W, Zeiler-Hilgart G. Formation of meat-like flavor compounds. pp. 183-192. In: Flavor Precursors: Thermal and Enzymatic Conversions. Teranishi R, Tekeoka GR, Guntert M (eds). ASC Symposium Series 490, American Chemical Society, Washington DC, USA (1992)
  25. Whitfield FB, Mottram DS. Investigation of the reaction between 4-hydroxy-5-methyl-3(2H)-furanone and cysteine or hydrogen sulfide at pH 4.5. J. Agric. Food Chem. 25: 113-117 (1977) https://doi.org/10.1021/jf60209a049
  26. Shu CK, Mookherjee BD, Ho CT. Volatile components of the thermal degradation of 2,5-dimethyl-4-hydroxy-3(2H)-furanone. J. Agric. Food Chem. 33: 446-448 (1985) https://doi.org/10.1021/jf00063a030
  27. IOFI. Code of Practice. International Organization of Flavor Industries, Geneva, Switzerland (1990)