An Improved Finite Element Method by Adding Arbitrary Nodes in a Domain

임의의 절점 추가에 의한 개선 유한요소법

  • 김현규 (서울산업대학교 기계공학과)
  • Published : 2006.12.01


In the present paper, in the context of the meshless interpolation of a moving least squares (MLS) type, a novel method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order to improve the accuracy of solution. The secondary nodes can be placed at any location where one needs to obtain a better resolution. The support domains for the shape functions in the MLS approximation are defined from the primary nodes, and the secondary nodes use the same support domains. The shape functions based on the MLS approximation, in an integration domain, have a single type of a rational function, which reduces the difficulty of numerical integration to evaluate the weak form. The present method is very useful in an adaptive calculation, because the secondary nodes can be easily added and moved without an additional mesh. Several numerical examples are presented to illustrate the effectiveness of the present method.


Finite Element Methods;Meshless Methods;Moving Least Square;Numerical Integration


  1. Gingold, R. A. and Monaghan, J. J., 1977, 'Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical Stars,' Mon. Not. Roy. Astron. Soc., Vol. 181, pp.375-389
  2. Belytschko, T., Yu, Y. Y. and Gu, L., 1994, 'Element-Free Galerkin Methods,' Int. J. Numer. Methods Engrg., Vol. 37, pp. 229-256
  3. Liu, W. K., Jun, S. and Zhang, Y. F., 1995, 'Reproducing Kernel Particle Methods,' Int. J. Numer. Methods in Fluids, Vol. 20, pp. 1081-1106
  4. Duarte, C. A. and Oden, J. T., 1996, 'Hp-Cloud - A Meshless Method to Solve Boundary-Value Problems,' Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 237-262
  5. Babuska, I. and Melenk, J. M., 1997, 'The Partition of Unity Method,' Int. J. Numer. Methods Engrg., Vol. 40, pp. 727-758.<727::AID-NME86>3.0.CO;2-N
  6. Atluri, S. N. and Zhu, T., 1998, 'A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics,' Comput. Mech., Vol. 22, pp. 117-127
  7. Liu, G. R. and Tu, Z. H., 2002, 'An Adaptive Procedure Based on Background Cells for Meshless Methods,' Comput. Methods Appl. Meeh. Engrg., Vol. 191, pp.1923-1943
  8. Atluri, S. N., Kim, H.-G. and Cho, J. Y., 1999, 'A Critical Assessment of the Truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) Methods,' Comput. Mech., Vol. 24, pp. 348-372
  9. Oden, J. T., Duarte, C. A. M. and Zienkiewicz, O. C., 1998, 'A New Cloud-based Hp Finite Element Method,' Comput. Methods Appl. Mech. Engrg., Vol. 153, pp. 117-126
  10. Liu, W. K., Uras, R. A. and Chen, Y., 1998, 'Enrichment of the Finite Element Method with the Reproducing Kernel Particle Method,' J. Appl. Mech. ASME, Vol. 64, pp. 861-870
  11. Yeon Jeoung-Heum, Youn Sung-Kie, 2004, 'Meshfree Analysis of Elasto-Plastic Deformation Using Variational Multiscale Method,' Trans. of KSME A, Vol. 28, No. 8, pp. 1196-1202
  12. Park Sang-Hoon, Kwon Kie-Chan, Youn Sung-Kie, 2002, 'A Study on the Adaptive Scheme Using Least-Squares Meshfree Method,' Trans. of KSME A, Vol. 26, No. 9, pp. 1849-1858
  13. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. and Krysl, P., 1996, 'Meshless Methods: An Overview and Recent Developments,' Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 3-47
  14. Dolbow, J and Belytschko, T., 1999, 'Numerical integration of the Galerkin weak form in meshless methods,' Comput. Mech., Vol. 23, pp. 219-230
  15. Song Taehan, Seog Byungho, Lim Jangkeun, 2001, 'Improvement Scheme of Nodal Integration in Meshless Method ),' Trans. of KSME A, Vol. 25, No. 9, pp. 1376-1383
  16. Cho, J. Y. and Jee, Y. B., 2003, 'An Adaptive Meshindependent Numerical Integration for Meshless Local Petrov-Galerkin Method,' KSME International Journal, Vol. 17, pp. 986-998
  17. Timoshenko, S. P. and Goodier, J. N., 1970, Theory of Elasticity. 3rd Edn. McGraw-Hill, New York