Modelling the wide temperature range of steam table using the neural networks

신경회로망을 사용한 넓은 온도 범위의 증기표 모델링

  • 이태환 (진주산업대학교 메카트로닉스공학과)
  • Published : 2006.11.30

Abstract

In numerical analysis on evaluating the thermal performance of the thermal equipment, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table itself cannot be used without modelling. In this study applicability of neural networks in modelling the wide temperature range of wet saturated vapor region was examined. the multi-layer neural network consists of a input layer with 1 node, two hidden layers with 10 and 20 nodes respectively and a output layer with 6 nodes. Quadratic and cubic spline interpoations methods were also applied for comparison. Neural network model revealed similar percentage error to spline interpolation. From these results, it is confirmed that the neural networks could be powerful method in modelling the wide range of the steam table.

References

  1. Domanski, P. A., EVSIM - An evaprator simulation model accounting for refrigerant and one dimensional air distribution, NISTIR 89-4133,1989
  2. 박병규, 이태환, 제습공조용 핀-관형 증발기의 열성능 모델링, 설비공학논문집, 제12권 제11호, pp. 1020-1030, 2000
  3. 박영무, 박경근, 장호명, 김영일, 열역학, 사이텍미디어, 2000
  4. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, McGraw-Hill Book Company, 1990
  5. J. A. Freeman and D. M. Skapura, Neural Networks : Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company, 1991
  6. J. W. Hines, MATLAB Supplement to Fuzzy and Neural Aproaches in Engineering, John Wiley and Sons, Inc, 1997
  7. 이태환, 신경회로망을 이용한 증기표의 모델링, 진주산업대학교 산업과학기술연구소보, 제10호, pp.211-218, 2003
  8. 이태환, '신경회로망을 이용한 과열수증기의 모델링,' 진주산업대학교 산업과학기술연구소 논문집, 제12호, pp. 271-276, 2005
  9. 이태환, '신경회로망을 이용한 냉매의 물성 모델링,' 진주산업대학교 산업과학기술연구소 논문집, 제13호, pp. 287-293, 2006
  10. 이태환, 박진현, '신경회로망을 이용한 증기표의 함수근사', 한국해양정보통신학회논문지, 제10권, 제3호, pp.459-466, 2006