DOI QR코드

DOI QR Code

STRONG COMMUTATIVITY PRESERVING MAPPINGS ON SEMIPRIME RINGS

  • Ali, Asif ;
  • Yasen, Muhammad ;
  • Anwar, Matloob
  • Published : 2006.11.30

Abstract

Let R be a semiprime ring and f be an endomorphism on R. If f is a strong commutativity preserving (simply, scp) map on a non-zero ideal U of R, then f is commuting on U.

Keywords

prime and semiprime rings;commuting and scp maps

References

  1. H. E. Bell, A note on centralizers, Int. J. Math. Math. Sci. 24 (2000), no. 1, 55-57 https://doi.org/10.1155/S0161171200004245
  2. H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447 https://doi.org/10.4153/CMB-1994-064-x
  3. H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101 https://doi.org/10.4153/CMB-1987-014-x
  4. M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings,. Trans. Amer. Math. Soc. 335 (1993), no. 2, 525- 546 https://doi.org/10.2307/2154392
  5. M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992), no. 1, 205-206 https://doi.org/10.1155/S0161171292000255

Cited by

  1. On Centralizing and Strong Commutativity Preserving Maps of Semiprime Rings vol.67, pp.2, 2015, https://doi.org/10.1007/s11253-015-1082-4
  2. Some results on ideals of semiprime rings with multiplicative generalized derivations vol.46, pp.11, 2018, https://doi.org/10.1080/00927872.2018.1459644