Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 43 Issue 4
- /
- Pages.711-713
- /
- 2006
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
STRONG COMMUTATIVITY PRESERVING MAPPINGS ON SEMIPRIME RINGS
- Ali, Asif (DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY) ;
- Yasen, Muhammad (DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY) ;
- Anwar, Matloob (DEPARTMENT OF MATHEMATICS, QUAID-I-AZAM UNIVERSITY)
- Published : 2006.11.30
Abstract
Let R be a semiprime ring and f be an endomorphism on R. If f is a strong commutativity preserving (simply, scp) map on a non-zero ideal U of R, then f is commuting on U.
File
References
- H. E. Bell, A note on centralizers, Int. J. Math. Math. Sci. 24 (2000), no. 1, 55-57 https://doi.org/10.1155/S0161171200004245
- H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447 https://doi.org/10.4153/CMB-1994-064-x
- H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101 https://doi.org/10.4153/CMB-1987-014-x
- M. Bresar, Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings,. Trans. Amer. Math. Soc. 335 (1993), no. 2, 525- 546 https://doi.org/10.2307/2154392
- M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992), no. 1, 205-206 https://doi.org/10.1155/S0161171292000255
Cited by
- On Centralizing and Strong Commutativity Preserving Maps of Semiprime Rings vol.67, pp.2, 2015, https://doi.org/10.1007/s11253-015-1082-4
- Some results on ideals of semiprime rings with multiplicative generalized derivations vol.46, pp.11, 2018, https://doi.org/10.1080/00927872.2018.1459644