Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 43 Issue 4
- /
- Pages.813-820
- /
- 2006
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
STATIONARITY AND β-MIXING PROPERTY OF A MIXTURE AR-ARCH MODELS
- Lee, Oe-Sook (DEPARTMENT OF STATISTICS, EWHA WOMANS UNIVERSITY)
- Published : 2006.11.30
Abstract
We consider a MAR model with ARCH type conditional heteroscedasticity. MAR-ARCH model can be derived as a smoothed version of the double threshold AR-ARCH model by adding a random error to the threshold parameters. Easy to check sufficient conditions for strict stationarity,
File
References
- D. B. H. Cline and H. H. Pu, Stability and the Lyapounov exponent of threshold AR-ARCH models, Ann. Appl. Probab. 14 (2004), no. 4, 1920-1949 https://doi.org/10.1214/105051604000000431
- D. Dijk, T. TerÄasvirta, and P. Franses, Smooth transition autoregressive models: a survey of recent developments, Econometric Rev. 21 (2002), no. 1, 1-47 https://doi.org/10.1081/ETC-120008723
- R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of the United Kingdom inflation, Econometrica 50 (1982), no. 4, 987-1007 https://doi.org/10.2307/1912773
- M. Lanne and P. Saikkonen, Modeling the U.S. Short-term interest rate by mixture autoregressive processes, Journal of Financial Econometrics 1 (2003), no. 1, 96-125 https://doi.org/10.1093/jjfinec/nbg004
- M. Lanne and P. Saikkonen, On mixture autoregressive models, 2004, preprint
- N. D. Le, R. D. Martin, and A. E. Raftery, Modeling Flat Stretches, bursts and outliers in time series using mixture transition distribution models, J. Amer. Statist. Assoc. 91 (1996), no. 436, 1504-1515 https://doi.org/10.2307/2291576
- O. Lee, Geometric ergodicity and existence of higher-order moments for DTARCH (p, q) process, J. Korean Statist. Society 32 (2003), no. 2, 193-202
- S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Springer-Verlag, 1993
- H. Tong, Nonlinear Time Series: A Dynamical System Approach, Oxford: Oxford University Press, 1990
- C. S. Wong and W. K. Li, On a mixture autoregressive model, J. Royal Stat. Soc. Ser. B Stat. Methodl. 62 (2000), no. 1, 95-115
- C. S. Wong and W. K. Li, On a mixture autogressive conditional heteroscedastic model, J. Amer. Statist. Assoc. 96 (2001), no. 455, 982-995 https://doi.org/10.1198/016214501753208645
- C. S. Wong and W. K. Li, On a logistic mixture autoregressive model, Biometrika 88 (2001), no. 3, 833-846 https://doi.org/10.1093/biomet/88.3.833
- A. J. Zeevi, R. Meir, and R. J. Adler, Nonlinear models for time series using mixtures of autoregressive models, 2000
Cited by
- Mixtures of autoregressive-autoregressive conditionally heteroscedastic models: semi-parametric approach vol.41, pp.2, 2014, https://doi.org/10.1080/02664763.2013.839129