In vitro Degradation of β-TCP/PLGA Composites Prepared with Microwave Energy in Simulated Body Fluid

마이크로파에 의해 합성된 β-TCP/PLGA 복합체의 의사체액에서의 분해 거동

  • Jin, Hyeong-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Min, Sang-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Hyun, Yong-Taek (Department of Future Technology, Korea Institute of Machinery and Materials) ;
  • Park, Hong-Chae (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science and Engineering, Pusan National University)
  • 진형호 (부산대학교 재료공학부) ;
  • 민상호 (부산대학교 재료공학부) ;
  • 현용택 (한국기계연구원 미래기술연구부) ;
  • 박홍채 (부산대학교 재료공학부) ;
  • 윤석영 (부산대학교 재료공학부)
  • Published : 2006.11.27


The biodegradable $\beta$-tricalcium phosphate ($\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in situ polymerization with microwave energy. The degradation behavior of $\beta$-TCP/PLGA composite was investigated by soaking in simulated body fluid (SBF) for 4 weeks. The molecular weight of the $\beta$-TCP/PLGA composites decreased with soaking time until week 2, whereas the loss rate of molecular weight reduced after week 2. The incubation time was needed for the degradation of the $\beta$-TCP, indicating that the $\beta$-TCP should be detached from the PLGA matrix and then degraded into SBF solution. The studies of mass loss of the composites with the soaking time revealed that the degradation behavior of PLGA would be processed with the transformation from the polymer to the oligomer followed by the degradation. Morphological changes, whisker-like, due to transformation and degradation of polymer in the composites were observed after week 2. On the basis of the results, it found that the degradation behavior of $\beta$-TCP/PLGA composites was influenced by the $\beta$-TCP content in the composites and the degradation rate of the composites could be controlled by the initial molecular weight of PLGA in the composites.


  1. T. Kissel, Y. Li and F. Unger, ad. Drug. Deliv. Reviews, 54, 99 (2002)
  2. R. Langer and J. P. Vacanti, Science, 260, 920 (1993)
  3. L. Wu and J. Ding, Biomaterials, 25, 5821 (2004)
  4. L. Lu, S. J. Peter, M. D. LyMan, H. L. Lai, S. M. Leite, J. A. Tamada, S. Uyama, J. P. Vacanti, R. Langer and A. G Mikos, Biomaterials, 21, 1837 (2000)
  5. C. M. Agrawal, J. S. Micjinney, D. Lanctot and K. A. Athanasiou, Biomaterials, 21, 2443 (2000)
  6. R. Langer, Science, 249, 1527 (1990)
  7. D. H. Kim and D. C. Martin, Biomaterials, 27, 3031 (2006)
  8. A. O. Eniola and D. A. Hammer, J. of Controlled Release, 87, 15 (2003)
  9. Z. Wang, S. Wang, Y. Marois, R. Guidoin and Z. Zhang, Biomaterials, 26, 7387 (2005)
  10. K. T. Nguyen, N. Shaikh, K. P. Shukla, S. H. Su, R. C. Ederhart and L. Tang, Biomaterials, 25, 5333 (2004)
  11. A. A. Ignatitus, P. Augat and L. E. Claes, J. Biomater. Sci. Polymer Edn., 12, 185 (2001)
  12. K. Kesenci, L. Fambri, C. Migliaresi and E. Piskin, J. Biomater. Sci. Polymer Edn., 11, 617 (2000)
  13. A. Oyane, H. M. Kim, T. Furuya, T. Kokubo, T. Miyazaki and T. Nakamura, J. Biomed. Mater. Res., 65A, 188 (2003)
  14. H. H. Jin, S. H. Min, H. C. Park and S. Y. Yoon, Kor, J. Mater. Res., 16, 1 (2006)
  15. A. J. Dornb, J. Kost and D. M. wiseman, Drug Targeting Delivery, Vol. 7 Handbook of Biodegradable Polymers, CRC, Boca Raton (1998)
  16. Y. Dui and A. Steinbuchel, Biopolymers, Vol. 4 Polyesters lll, Wiley-VCH, Weinheim (2002)

Cited by

  1. Degradation Behavior of Hydroxyapatite with Different Crystallinity in Simulated Body Fluid Solution vol.21, pp.6, 2011,