DOI QR코드

DOI QR Code

Nb-doping Effects on Ferroelectric and Piezoelectric Properties of Pb-free Bi0.5Na0.5

비납계 Bi0.5Na0.5의 강유전 및 압전 특성에 미치는 Nb-doping 효과

  • Yeo, Hong-Goo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Sung, Yeon-Soo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Song, Tae-Kwon (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Cho, Jong-Ho (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Jeong, Soon-Jong (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research Group) ;
  • Song, Jae-Sung (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research Group) ;
  • Kim, Myong-Ho (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research Group)
  • 여홍구 (창원대학교 나노.신소재 공학부) ;
  • 성연수 (창원대학교 나노.신소재 공학부) ;
  • 송태권 (창원대학교 나노.신소재 공학부) ;
  • 조종호 (창원대학교 나노.신소재 공학부) ;
  • 정순종 (한국전기연구원 전자기소자그룹) ;
  • 송재성 (한국전기연구원 전자기소자그룹) ;
  • 김명호 (한국전기연구원 전자기소자그룹)
  • Published : 2006.11.27

Abstract

Nb was doped to Pb-free $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) by a solid state mixing process to form $(Bi_{0.5}Na_{0.5})Ti_{1-x}Nb_xO_3\;(x=0{\sim}0.05)$ (BNTNb) and its doping effects on ferroelectric and piezoelctric properties of BNT were investigated. The BNTNb solid solutions were formed up to x=0.01 with no apparent second phases while grain sizes decreased. As x increased, coercive field ($E_c$) and mechanical quality factor ($Q_m$) decreased but piezoelectric constant ($d_{33}$) increased, which indicates Nb acts as a donor for BNT.

References

  1. B. Jaffe, R. S. Roth and S. Marzullo, J. Appl. Phys., 25, 809 (1954) https://doi.org/10.1063/1.1721741
  2. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and N. N. Kranik, Sov. Phys, Solid State(Engl. Transl.), 2(11), 2651 (1961)
  3. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys., 38, 5564 (1999) https://doi.org/10.1143/JJAP.38.5564
  4. T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., 30(9B), 2236 (1991) https://doi.org/10.1143/JJAP.30.2236
  5. T. Takenaka, T. Okuda and K. Takegahara, Ferroclcctrics, 196, 175 (1997) https://doi.org/10.1080/00150199708224156
  6. Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun and R. Xu, Mater. Sci. Eng. B, 112, 5 (2004) https://doi.org/10.1016/j.mseb.2004.04.019
  7. H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 36, 6055 (1997) https://doi.org/10.1143/JJAP.36.6055
  8. A. Herabut and A. Safari, J. Am. Ceram. Soc., 80(11), 2954 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03219.x
  9. G. V. Lewis and C. R. A. Catlow, J. Am. Ceram, Soc., 68(10), 555(1985) https://doi.org/10.1111/j.1151-2916.1985.tb11523.x
  10. J. Y. Yi, J. K. Lee and K. J. Hong, J. Am. Ceram. Soc., 85(12), 3004 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00570.x
  11. P. G. Lucuta, F. Constantinescu and D. Barb, J. Am. Ceram. Soc., 68(10), 533 (1985) https://doi.org/10.1111/j.1151-2916.1985.tb11519.x
  12. S. E. Park, S. J. Chung, I. T. Kim and K. S. Hong, J. Am. Ceram, Soc.,77, 2641 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04655.x
  13. B. Jaffe, W. R. Cook, Jr.and H. Jaffe, Piezoelectric Ceramcis, p154, Academic Press, New York, (1971)
  14. C. L. Huang.and B. H. Chen, Solid State Communications, 130, 19 (2004) https://doi.org/10.1016/j.ssc.2004.01.017