DOI QR코드

DOI QR Code

The Effect of MgO Content on the Preparation of Porous Hydroxyapaite Scaffolds by Polymer Sponge Method

폴리머 스펀지법을 이용한 다공성 수산화아파타이트 지지체 제조 시 MgO 첨가량에 따른 영향

  • Jin, Hyeong-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Min, Sang-Ho (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Won-Ki (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Park, Hong-Chae (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science and Engineering, Pusan National University)
  • 진형호 (부산대학교 재료공학부) ;
  • 민상호 (부산대학교 재료공학부) ;
  • 이원기 (부경대학교 응용화학공학부) ;
  • 박홍채 (부산대학교 재료공학부) ;
  • 윤석영 (부산대학교 재료공학부)
  • Published : 2006.11.27

Abstract

Porous hydroxyapatite (HAp) scaffolds have been prepared by using the slurry including HAp and magnesia based on the replication of polymer sponge substrate. The influence of MgO content in slurry on the pore morphology and size, density, porosity, and mechanical strength of porous HAp scaffolds was investigated. The obtained scaffolds with average pore sizes ranging 150 to 300 mm had open, relatively uniform, and interconnected porous structure regardless of MgO content. As the MgO content increased, the pore network frame of scaffolds became to be relatively stronger, even though the pore size was not much changed. The compressive strength of the scaffolds increased rapidly with the increase of MgO content because of increasing the pore wall thickness and density of the scaffolds. As a result, the porosity, density, and compressive strength of the porous HAp scaffolds prepared by the sponge method were significantly affected by the addition of MgO.

References

  1. P. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  2. J. A. Hubbell, Bio-technoI., 13, 565 (1997) https://doi.org/10.1038/nbt0695-565
  3. W. W. Minuth, M. Sittinger and S. Kloth, Cell Tissue Res., 291, 1 (1998) https://doi.org/10.1007/s004410050974
  4. R. B. Martin, Mater. Sci. Forum., 293, 5 (1999) https://doi.org/10.4028/www.scientific.net/MSF.293.5
  5. C. R. Nunes, S. J. Simske, R. Sachdeva and L. M. Wolford, J. Biomed. Mater. Res., 36, 560 (1997) https://doi.org/10.1002/(SICI)1097-4636(19970915)36:4<560::AID-JBM15>3.0.CO;2-E
  6. P. Sepulveda, Am. Ceram. Soc. Bull., 76, 61 (1997)
  7. J. S. Woyansky, C. E. Scott and W. P. Minner, Am. Ceram Soc. Bull., 71, 1674 (1992)
  8. H. R. Ramay and M. Zhang, Biomaterials, 24, 3293 (2003) https://doi.org/10.1016/S0142-9612(03)00171-6
  9. H. P. Cahoon and C. J. Christensen, J. Am. Ceram. Soc., 39, 337 (1956) https://doi.org/10.1111/j.1151-2916.1956.tb15599.x
  10. K. Y. Lee, J. H. Lee, H. I. Kim, K. W. Han and J. M. Park, Mater. Lett., 37, 90 (1998) https://doi.org/10.1016/S0167-577X(98)00071-8
  11. Y. Lin, X. S. Ning, H. Zhou, K. Chen, R. Peng and W. Xu, Mater. Lett., 57, 15 (2002) https://doi.org/10.1016/S0167-577X(02)00690-0
  12. S. F. Hulbert, J. S. Morrison and J. J. Klawitter, J. Biomed, Mater. Res., 6, 347 (1972) https://doi.org/10.1002/jbm.820060505
  13. T. J. Flatley, K. LLynch and M. Benson, Clin. Orthop., 179, 246 (1983)
  14. S. Kume, M. Yasuoka, N. Omura and K. Watari, J. Eur. Ceram. Soc., 25, 2791 (2005) https://doi.org/10.1016/j.jeurceramsoc.2005.03.141
  15. J. Wang, S. Y. Lim, S. C. Ng, C. H. Chew and L. M. Gan, Mater. Lett., 33, 273 (1998) https://doi.org/10.1016/S0167-577X(97)00121-3