Construction of the Multiple Processing Unit by De Bruijn Graph

De Bruijn 그래프에 의한 다중처리기 구성

  • 박춘명 (충주대학교 컴퓨터공학)
  • Published : 2006.12.30


This paper presents a method of constructing the universal multiple processing element unit(UMPEU) by De Bruijn Graph. The second method is as following. First, we propose transformation operators in order to construct the De Bruijn UMPEU using properties of graph. Second, we construct the transformation table of De Bruijn graph using above transformation operators. Finally we construct the De Bruijn graph using transformation table. The proposed UMPEU be able to construct the De Bruijn graph for any prime number and integer value of finite fields. Also the UMPEU is applied to fault-tolerant computing system, pipeline class. parallel processing network, switching function and its circuits.


  1. V. Zyuban, D. Beutel, V. Srinivasan, M. Gschwind, P. Bose, P. N. Strenski, and P.G.Emma, 'Intergrated Analysis of Power and Oerformance for Pipelined Microprocessors,' IEEE Trans. Comput. Vol.53, NO.8, pp.1004-11016, Aug. 2004
  2. A. Lempel, 'On a Homomorphism of the DE- Bruijn Graph and its Applications to the Design of Feedback Shift Registers', lEEE Trans. Comput. Vol.C-19, NO12, pp.1204-1209, Dec. 1970
  3. I. F. Blake, Algebraic Coding Theory : History and development, Down, Hutchinson & Ross, Inc., Stroudburg, Pennsylvania, 1973
  4. E. Artin, Galois Theory, NAPCO Graphic arts, Inc., Wisconsin. 1971
  5. F. Balarin et al., Hardware-Software Co-design of Embedded Systems: The Polis Approach, Kluwer Academic Press, Boston, June 1997
  6. R. Gould, Graph Theory, The Bejamin/Cummings Publishing Company, Inc., 1988
  7. B. R. Childers and J. W. Davidson,'Custom Wide Counterflow Pipelines for high-performance Embedded Applications,' IEEE Trans. Comput. Vol.53, NO.2, pp.141-158, Feb. 2004
  8. R. K. Gupta, Co-Synthesis of Hardware and Software for Digital Embedded Systems, vol. 329, Kluwer Academic Publishers, Boston, Aug. 1995
  9. M. Gondran and M. Minoux, Graph and Algorithms, A Wiley-interscience publication, Toronto, 1984
  10. R. Lidi and G. Piltz, Applied Abstract Algebra, Spring-Verlg, Inc., 1984
  11. B.Arazi,'On the Sythesis of De-Bruijn Sequences', INFORMATION and CONTROL 49., pp.81-90, 1981
  12. S. Mirta, N. R. Saxena, and E. J. McCluskey, 'Efficient Design Diversity Estimation for Combinational Circuits,' IEEE Trans. Comput. Vol.53, NO.11, pp.1493-1496, Nov. 2004