DOI QR코드

DOI QR Code

Test for the Exponential Distribution Based on Multiply Type-II Censored Samples

Kang, Suk-Bok;Lee, Sang-Ki

  • Published : 2006.12.31

Abstract

In this paper, we develope three modified empirical distribution function type tests, the modified Cramer-von Mises test, the modified Anderson-Darling test, and the modified Kolmogorov-Smirnov test for the two-parameter exponential distribution with unknown parameters based on multiply Type-II censored samples. For each test, Monte Carlo techniques are used to generate the critical values. The powers of these tests are also investigated under several alternative distributions.

Keywords

Anderson-Darling test;approximate maximum likelihood estimator;Clamor-von Mises test;exponential distribution;Kolmogorov-Smirnov test;multiply Type-II censored sample

References

  1. Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring. IEEE Transactions on Reliability, Vol. 38, 355-357 https://doi.org/10.1109/24.44181
  2. Balasubramanian, K. and Balakrishnan, N. (1992). Estimation for one-parameter and two-parameter exponential distributions under multiple Type-Il censoring. Statistische Hefte, Vol. 33, 203-216
  3. Lin, C.T. and Balakrishnan, N. (2003). Exact prediction intervals for exponential distributions based on doubly Type-Il censored samples. Journal of Applied Statistics, Vol. 30, 783-801 https://doi.org/10.1080/0266476032000076056
  4. Pettitt, A.N. (1976). Cramer-von Mises statistics for testing normality with censored samples. Biometrika, Vol. 63, 475-481
  5. Pettitt, A.N. and Stephens, M.A. (1976). Modified Cramer-von Mises statistics for censored data. Biometrika, Vol. 63, 291-298
  6. Porter III, J.E, Coleman, J.W., and Moore, A.H. (1992). Modified KS, AD, and C-vM tests for the Pareto distribution with unknown location & scale parameters. IEEE Transaction on Reliability, Vol. 41, 112-117 https://doi.org/10.1109/24.126681
  7. Puig, P. and Stephens, M.A. (2000). Tests of fit for the Laplace distribution with applications. Technometrics, Vol. 42, 417-424 https://doi.org/10.2307/1270952
  8. Upadhyay, S.K., Singh, U., and Shastri, V. (1996). Estimation of exponential parameters under multiply Type-Il censoring. Communications in Statistics- Simulation and Computation, Vol. 25, 801-815 https://doi.org/10.1080/03610919608813343
  9. Kang, S. B. and Lee, S. K. (2005). AMLEs for the exponential distribution based on multiple Type-II censored samples. The Korean Communications in Statistics, Vol. 12, 603-613 https://doi.org/10.5351/CKSS.2005.12.3.603
  10. Kang, S. B. (2003). Approximate MLEs for exponential distribution under multiple Type-Il censoring. Journal of the Korean Data & Information Science Society, Vol. 14, 983-988

Cited by

  1. Goodness-of-fit test for the logistic distribution based on multiply type-II censored samples vol.25, pp.1, 2014, https://doi.org/10.7465/jkdi.2014.25.1.195
  2. Goodness-of-fit tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples vol.25, pp.4, 2014, https://doi.org/10.7465/jkdi.2014.25.4.903