Classification of Microarray Gene Expression Data by MultiBlock Dimension Reduction

  • Oh, Mi-Ra (Department of Statistics, Chonnam National University) ;
  • Kim, Seo-Young (Department of Statistics, Chonnam National University) ;
  • Kim, Kyung-Sook (Department of Statistics, Chonnam National University) ;
  • Baek, Jang-Sun (Department of Statistics, Chonnam National University) ;
  • Son, Young-Sook (Department of Statistics, Chonnam National University)
  • Published : 2006.12.31


In this paper, we applied the multiblock dimension reduction methods to the classification of tumor based on microarray gene expressions data. This procedure involves clustering selected genes, multiblock dimension reduction and classification using linear discrimination analysis and quadratic discrimination analysis.


  1. Alan, U, Barkai, N., Notterman, D.A., Gish, K., Mack, S.Y.D. and Levine, J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, USA. Vol. 96. 6745-6750
  2. Antoniadis, A., Larnber-Lacroix, S. and Leblance, F. (2003). Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics. Vol. 19. 563-570
  3. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M. and Yakhini, Z. (2000). Tissue Classification with Gene Expression Profiles. Journal of Computational Biology. Vol. 7. 559-584
  4. Dudoit, S., Fridlyand, J. and Speed, T.P. (2000). Comparison of discrimination methods for the classification of tumors using gene expression data. Technical Report 576. Department of Statistics, University of California, Berkeley
  5. Fraley, C. and Raftery, A.E. (2002). Model-Based Clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association. Vol. 94. 611-631
  6. Furey, T.S., Cristianini, N., Duffy, N., Shummer, B.M. and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics. Vol. 16. 906-914
  7. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J, Coller, H., Loh, M., Downing, J, Caligiuri, M., Bloomfield, C. and Lander, E. (1999). Molecular Classification of Cancer: Class discovery and class prediction by gene expression monitoring, Science. Vol. 286. 531-537
  8. Johnson, R.A. and Wichern, D.W. (1998). Applied Multivariate Statistical Analvsis(4th ed.), Pretice Hall
  9. Nguyen, D.V. and Rocke, D.M. (2002). Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. Vol. 18. 39-50
  10. Singh, D., Febbo, P.G., Ross, K, Jackson, D.G., Manola, J, Ladd, C., Tamayo, P., Renshaw, A.A., D'Amico, A.V., Richie, J.P., Lander, E.S., Loda, M., Kantoff, P.W., Golub, T.R and Sellers, W.R (2002). Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. Vol. 1. 203-209
  11. van 't Veer, L.J, Dai, H., van de Vijver, M.J, He, YD., Hart, A.A.M., Mao, M., Peterse, H.L., van der Kooy, K., Marton. M.J, Witteveen, A.T., Schreiber, G.J, Kerkhoven, RM., Roberts, C., Linsley, P.S., Bernards, R and Friend, S.H. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature. Vol. 405. 530-536
  12. Weston, J, Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T. and Vapnik, V. (2001). Feature selection for SVMs. Advances in Neural Information Processing Systems.. Vol. 13. 668-674
  13. Wold, S., Geladt, P., Esbensen, K. and Ohman, J. (1987a). Multiway Principal Components and PLS Analysis. Journal of Chemometrics. Vol. 1. 41-56
  14. Wold, S., Hellberg, S., Lundstedt, T., Sjostrom, M. and Wold, H. (1987b). PLS modeling with latent variable in two or more dimensions. Proc. Symp. on PLS Model Building: Theory and Application. Frankfurt am Main. also Tech. Rep., Department of Organic Chemistry, Umea University