DOI QR코드

DOI QR Code

A COMMON FIXED POINT THEOREM FOR A SEQUENCE OF SELF MAPS IN INTUITIONISTIC FUZZY METRIC SPACES

Kutukcu, Servet

  • Published : 2006.10.31

Abstract

The purpose of this paper is to obtain a new common fixed point theorem by using a new contractive condition in intuitionistic fuzzy metric spaces. Our result generalizes and extends many known results in fuzzy metric spaces and metric spaces.

Keywords

common fixed point;mutually maps;intuitionistic mutually maps;fixed point

References

  1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96 https://doi.org/10.1016/S0165-0114(86)80034-3
  2. B. S. Choudhury, A unique common fixed point theorem for a sequence of selfmappings in Menger spaces, Bull. Korean Math. Soc. 37 (2000), no. 3, 569-575
  3. O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika 11 (1975), 326-334
  4. S. Kutukcu, D. Turkoglu and C. Yildiz, Common fixed points of compatible maps of type ($\beta$) on fuzzy metric spaces, Commun. Korean Math. Soc. 21 (2006), no, 1,89-100 https://doi.org/10.4134/CKMS.2006.21.1.089
  5. J. H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons & Fractals 22 (2004), 1039-1046 https://doi.org/10.1016/j.chaos.2004.02.051
  6. S. Sharma and J.K. Tiwari, Common fixed point in fuzzy metric spaces, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 12 (2005), no. 1, 17-31
  7. D. Turkoglu, S. Kutukcu and C. Yildiz, Common fixed points of compatible maps of type (a) on fuzzy metric spaces, Int. J. Appl. Math. 18 (2005), no. 2, 189-202
  8. L. A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
  9. A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399 https://doi.org/10.1016/0165-0114(94)90162-7