Effect of Purified Green Tea Catechins on Cytosolic Phospholipase $A_2$ and Arachidonic Acid Release in Human Gastrointestinal Cancer Cell Lines

  • Hong, Jung-Il (Division of Food Science, College of Life Science, Seoul Women's University) ;
  • Yang, Chung-S. (Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey)
  • Published : 2006.10.30


Ingestion of green tea has been shown to decrease prostaglandin $E_2$ levels in human colorectum, suggesting that tea constituents modulate arachidonic acid metabolism. In the present study, we investigated the effects of four purified green tea catechins, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epigallocatechin-3-gallate (EGCG), and (-)-epicatechin-3-gallate (ECG), on the catalytic activity of cytosolic phospholipase $A_2$ ($cPLA_2$) and release of arachidonic acid and its metabolites from intact cells. At $50\;{\mu}M$, EGCG and ECG inhibited $cPLA_2$ activity by 19 and 37%, respectively, whereas EC and EGC were less effective. The inhibitory effects of these catechins on arachidonic acid metabolism in intact cells were much more pronounced. At $10\;{\mu}M$, EGCG and ECG inhibited the release of arachidonic acid and its metabolites by 50-70% in human colon adenocarcinoma cells (HT-29) and human esophageal squamous carcinoma cells (KYSE-190 and 450). EGCG and ECG also inhibited arachidonic acid release induced by A23187, a calcium ionophore, in both HT-29 and KYSE-450 cell lines by 30-50%. The inhibitory effects of green tea catechins on $cPLA_2$ and arachidonic acid release may provide a possible mechanism for the prevention of human gastrointestinal inflammation and cancers.


  1. Yang CS, Maliakal P, Meng X. Inhibition of carcinogenesis by tea. Annu. Rev. Pharmacol. 42: 25-54 (2002) https://doi.org/10.1146/annurev.pharmtox.42.082101.154309
  2. Balentine DA, Wiseman SA, Bouwens LC. The chemistry of tea flavonoids. Crit. Rev. Food Sci. 37: 693-704 (1997) https://doi.org/10.1080/10408399709527797
  3. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H. Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res. 66: 2500-2505 (2006) https://doi.org/10.1158/0008-5472.CAN-05-3636
  4. Lambert JD, Hong J, Yang GY, Liao J, Yang CS. Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am. J. Clin. Nutr. 81: 284S-291S (2005) https://doi.org/10.1093/ajcn/81.1.284S
  5. Yang CS, Sang S, Lambert JD, Hou Z, Ju J, Lu G. Possible mechanisms of the cancer-preventive activities of green tea. Mol. Nutr. Food Res. 50: 170-175 (2006) https://doi.org/10.1002/mnfr.200500105
  6. Fischer SM. Prostaglandins and cancer. Front. Biosci. 2: 482-500 (1997) https://doi.org/10.2741/A207
  7. Romano M, Claria J. Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J. 17: 1986-1995 (2003) https://doi.org/10.1096/fj.03-0053rev
  8. Wang D, Dubois RN. Prostaglandins and cancer. Gut 55: 115-122 (2006) https://doi.org/10.1136/gut.2004.047100
  9. Diaz BL, Arm JP. Phospholipase $A_{2}$. Prostag. Leukotr. Ess. 69: 87-97 (2003) https://doi.org/10.1016/S0952-3278(03)00069-3
  10. Leslie CC. Properties and regulation of cytosolic phospholipase $A_{2}$. J. Biol. Chem. 272: 16709-16712 (1997) https://doi.org/10.1074/jbc.272.27.16709
  11. Seeds MC, Bass DA. Regulation and metabolism of arachidonic acid. Clin. Rev. Allerg. Immu. 17: 5-26 (1999) https://doi.org/10.1007/BF02737594
  12. Ara G, Teicher BA. Cyclooxygenase and lipoxygenase inhibitors in cancer therapy. Prostag. Leukotr. Ess. 54: 3-16 (1996) https://doi.org/10.1016/S0952-3278(96)90075-7
  13. Subbaramaiah K, Zakim D, Weksler BB, Dannenberg AJ. Inhibition of cyclooxygenase: a novel approach to cancer prevention. P. Soc. Exp. Biol. Med. 216: 201-210 (1997)
  14. Steele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA, Sigman CC, Kelloff GJ. Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidem. Biomar. 8: 467-483 (1999)
  15. Jun M, Jeong WS, Ho CT. Health promoting properties of natural flavor substances. Food Sci. Biotechnol. 15: 329-338 (2006)
  16. August, DA, Landau J, Caputo D, Hong J, Lee M-J, Yang CS. Ingestion of green tea rapidly decreases prostaglandin $E_{2}$ levels in rectal mucosa in humans. Cancer Epidem. Biomar. 8: 709-713 (1999)
  17. Hong J, Smith TJ, Ho CT, August DA. Yang CS. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues. Biochem. Pharmacol. 62: 1175-1183 (2001) https://doi.org/10.1016/S0006-2952(01)00767-5
  18. Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang S, Lee MJ, Yang CS. Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase $A_{2}$, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25: 1671-1679 (2004) https://doi.org/10.1093/carcin/bgh165
  19. Dole VP, Meinertz H. Microdetermination of long-chain fatty acid in plasma and tissues. J. Biol. Chem. 235: 2595-2599 (1960)
  20. Tischfield JA. A reassessment of the low molecular weight phospholipase $A_{2}$ gene family in mammals. J. Biol. Chem. 272: 17247-17250 (1997) https://doi.org/10.1074/jbc.272.28.17247
  21. Balsinde J, Dennis EA. Function and inhibition of intracellular calcium-independent phospholipase $A_{2}$. J. Biol. Chem. 272: 16069-16072 (1997) https://doi.org/10.1074/jbc.272.26.16069
  22. Mosior M, Six DA, Dennis EA. Group IV cytosolic phospholipase $A_{2}$ binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J. Biol. Chem. 273: 2184-2191 (1998) https://doi.org/10.1074/jbc.273.4.2184
  23. Schievella AR, Regier MK, Smith WL, Lin LL. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J. Biol. Chem. 270: 30749-30754 (1995) https://doi.org/10.1074/jbc.270.51.30749
  24. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL. A novel arachidonic acid-selective cytosolic $PLA_{2}$ contains a $Ca^{2+}$-dependent translocation domain with homology to PKC and GAP. Cell 65: 1043-1051 (1991) https://doi.org/10.1016/0092-8674(91)90556-E
  25. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ. $cPLA_{2}$ is phosphorylated and activated by MAP kinase. Cell 72: 269-278 (1993) https://doi.org/10.1016/0092-8674(93)90666-E
  26. Kramer RM, Roberts EF, Um SL, Borsch-Haubold AG, Watson SP, Fisher MJ, Jakubowski JA. p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase $A_{2}$ ($cPLA_{2}$) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by $cPLA_{2}$. J. Biol. Chem. 271: 27723-27729 (1996) https://doi.org/10.1074/jbc.271.44.27723
  27. Chung JY, Huang C, Meng X, Dong Z, Yang CS. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Cancer Res. 59: 4610-4617 (1999)