서 류

본문의 내용: 본문에는 제한이 있는 소형제어장의 설계방안, 주철의 설계기술‘주철주조방안의 기초’로 강화하여 읽을 것을, 본 강좌의 배경시정, 실무자를 위한 강의의 목표로 정리한 것이다.

증 추가로 도 이 비교적 박수운물을 대상으로 했다.

1) 일반에 보이는 전체로서는 기술 중에 자가 의문시한 내용이나 통설에 따른 결과는 완전히 일관되지 않게 논할 예정이다. 다만 이론이 있는 포도 비판하지 않도록 하였다.

2) 방안을 이해하기에는 약간의 기초이론의 도움이 필요하게 된다. ‘간단한 수리학’ ‘주행량 예전도’등이 그것을, 예비지식이 없더라도, 또 전문가로서 의지하지 않고 이해할 수 있도록 ‘결합’ 쌍에서 필요한 사항을 쉽게 해설해 두었다. 이는 사람도 논자의 전개상 와주문 중이다.

3) 강의의 내용을 정리할 수 있다. 과제로서 받은 질문에 의문을 가집한 문제를 상정해서 Q&A의 형태로 내 생각을 시술해 두었다.

제외한 사항: 대형주철이나 후속 주철은 대상으로 하지 않았지만, 논문에는 대형, 후속주철에 대해서도 적용할 수 있는 것이 많기 있다고 생각한다.

중. 주철, 박업주철에 관계없이 이의 이해에 대해서는 의지하지 않고 있다. 취급하지 않은 것은 중요시하지 않은 것이 아니라 저자의 소임이 아니기 때문이다.

1) 최근, 컴퓨터시스템에 따른 수치해석법의 기술습득이 상식이 되어 있지만 여기서는 수치해석에 대해서는 취급하지 않는다. 수치해석이라면 전단계의 기초적 문제에 한해 고 있다.

2) 수측결함에 미치는 미량원소의 영향등은 본문에서는 거의 취급하지 않는다. 중요한 요소들은 제조기술의 관점으로부터 설계의 단계에서 결정되어지고 있는 경우를 많고 전체의 영향은 허용컨트롤비에 한한다. 이는 모든 것에 의하되, 방안이론의 구간으로서 계획화하는 것만으로는 지식이 갖고 있지 않기 때문인다.

본문의 구성: 탕구방안과 업무방안으로 크게 구별하였다. 연습을 각각의 맨마에 마련했다. 발행 힌안은 연습을 하는 것으로 논자의 이해에 도움하기 바랐다.

I. 탕구방안의 기초

1. 탕구방의 기능

1.1 탕구방 안정기의 배수는 목적

(1) 탕구방안의 기술은 통합방장기술과 연결된다. 주조기술에 있어서 기술상의 최대의 관심사는 불량을 내지 않는 것이다. 방구방안이 직업의 원인으로서 불량발생이 된 사례는 그렇게 많지 않다. 직업 원인이 되는 후보는 그 외에 애매하다. 예를 들어 개별품의 발전이 직업의 원인이 되고 탕구방안이 직업의 원인은 아니다. 이와 같이 탕구방안은 불량 발생원인 후보를 분량으로 연결시키지 않는 보조적 역할이 되는 경우가 많다. 이런 이유로 때때로 탕구방안에 통하는 것이 불량을 방지하고 또한 주조할 방향조정을 진전하는 동참력을 양성하는데 유리하다고 생각된다.

탕구방안기술은 배수는 것은 계획화의 목적이 배수는 것으로, 결과발생방지를 위한 일상 활동은 그 골건을 훈련하는 편안 요인을 목표로 하는 것이다. 골건을 이해하지 않으면 결과발생 방지를 위한 일상 활동의 효율이 낮게 된다. 방안기술 중에서도 특히 탕구방안기술의 계획화는 지금까지 충분하다고 말할
수 없다고 생각된다.

불량률이 높다고 해서 현장은 만족주체는 안 된다. 실제 만드는 방안, 경영방안, 또는 작업성 좋은 방안 등의 근거를 생각하는 일이 남는다. 그것에는 방안이 갖는 점지를 알아 두지 않으면 근거적 평가를 할 수 없다.

(2) 전승기술을 의문점도 있다.

조용히 빌리 다니지 ‘난을 입으키지 않도록’ 라든가 애도에는 탕구방안에 관해서 목표 나머지 조건을 듣는 일이 많이 있었다. 구체적으로 이론을 들어, 정량적으로 과학적으로 계통적이었던 해답은 탕구방안에 관해서는 적었던 것처럼 생각된다.

현장에서는 방안이 좋다고 나쁘다고 조심할 여유가 없다. 보통의 측적기술체로 방안을 결정하지 않으면 안된다. 따라서 논문에 계급된 것이라고는 근거가 있어야 한다면 신뢰가 필요하며, 이론에 근거하여 설명할 필요가 있다. 그리고 밝혀진 다른 곳에서는 이렇게 보고 있는지를 확인한다. 반해 방법의 두면으로 충분한 검토를 거치지 않고 밝혀하고, 이론이 이것이 경험기술 로서 독자 행분을 한다. 때가 바뀌어 변한 것이라고 어느정도 그것이 전승기술이 되어 정착한다. 그렇게 되는 사례가 탕구방안에 많았다라고 생각된다.

자기 공신력 전승기술에 충분 신뢰를 두고 있는 경우에도 본 고에서 설명한 다른 보는 방법을 결합해 두는 것으로 더욱 이론을 증명시킨 기술로 이론이 밝혀진 전승기술로 높이글 수 있다고 생각된다.

1.2 탕구체의 47능
모두의 성대에 좋은 방안방안은 없다.
탕구체로 요구하는 주요한 기능은 다음의 4개이다.

1) 용량의 문제
2) 적절한 주입사를 준다
3) 알루미늄(سجل, 그, 계계, 보태, 교체)의 계계
4) 압축수축의 잠재 기능(지지의 2 압착방안 5. 1차 수축압량의 항에서 성립하는 중요한 기능이다)

이들 기능은 전혀 주조성장 방식기능을 유지하지만 결정의 종족에 따라서 서로 모순하는 경우도 있다. 또 동시에 주조, 주입, 무정물의 주조주체의 대책의 조건도 만족시키려면 한다. 탕구방안은 그것을 종합적으로 적절시시키기 위해서 결정된다.

2. 주입시간

2.1 추계의 주입시간 사고

(1) 근거가 예측한 최적 주입 시간

방안기술과 같은 이론적인 내용은 다음에 잘못이 있다고 알았다고 해도 지적을 받는 일이 적은 경우 독자행를 해서 전송되는 일이 있다. 상기의 이론과의 설도 그 왜이다.

(2) 이론의 적용을 잘못한 Byjorklund나 Trenchie의 설 ‘주입시간은 주입시의 과일도(주입온도의 온도의 차)의 2승에 비례해서야 한다’라고 그들은 말한다. Byjorklund는 구체적으로 ‘주입온도가 1300℃(원료판은 100%로, 액열한 주입시간은 1500℃(원료판은 200%로) 높아질 때도 약 반대로 250℃(원료판은 100%)로 낮게 하면 주입시간을 약반으로 축소하지 않으면 안된다’라고 단언 하고 있다. 즉 과열도가 100%이면서 주입시간은 약 4배가 다르게 된다. 이 설은 후술하는 미국의 경험과의 설명으로 우리들의 경험과도 맞지 않는다. 그설의 설에는 다음의 생각이 근거가 된다.

1) 주형태 용량이 유동성을 지속하는 사이에 주물 촉료시 키지 않으면 안된다.

2) 용량으로부터 주형태의 액열도 속도는 경과시간의 평균간에 반비례해서 감소한다.

이것이 해 심정과 맞지 않기 때문에, 다음과서 brit하는 박유특이 주형태 용량응용의 설에 주의해야 할 것은 아닌가 생각된다. 박유특이 용량에는 주형태 전체의 평균적 온도 평균적 유동성이 문제가 되는 것인 아니고. 응용으로 주류할 용량의용도가 아니라 많이 전환하고 있어도 맵 맞춰서 요하는 용량의유동성이 유지하고 있으니 담의 흐름이 전환하고 있는 것에 그 들은 주의하지 않은 것 같다. 그래서 우선 주형태의 담 흐름의 설계를 찾아보자.

2.2 박유특이의 설계의 설계

(1) 설계의 용량은 주류의 유동의 길을 만들기

Fig. 1-1은 원으로 놓여진 평판상태의 박유특이 밀의 두께무인 탕도이부터 늘어 올라서 주도한 때의 주물의 표면으로부터 추정한 용량의 담 흐름의 모식도[4]이다. 탕도의 표면을 보면 Figure 과선의 바람(경유 모양의 범위)은 강압의 흐름을 한 손으로 하는 모양은 평담의 저부이다. 이것은에 대해 과선의 내측(중앙부)은 거의 급속한 빈맥의 길은 색을 하고 있어 때때로 대체가 소산된다고 한다. 과선으로 나타난 것과 같이 그 지름 색의 범위는 왜도 간수록 줄게 된다. 용량이 최초로 주형으로 결측한 시점에서는 모든 부분에 점점 모양의

Fig. 1-1. 평판상 주물의 용량 상승 흐름의 모식도
발위와 같은 금형 표피가 된다고 생각된다. 다운에 과열도가 있는 후속의 용량이 오는 것에 의해 중앙부는 재용해된다. 따라서 용량이 적절한 시점에 있어서는 중앙부는 용량이 적절하게 조절되며 완전히 소모된 상태에 있었다고 추정된다. 이 용량이었던 부분이 지금 색으로 보이는 것이라고 생각된다.

Fig. 1-1로부터 다음과 같은 향류를 상상할 수 있다. 용량은 최초 탕도로부터 일어나 유휴를 임용하게 하여서, 황동으로 혹은 용량은 중앙부의 용량보다 더 빠르게 낭각이 진행되고 급속하게 점멸이 난단까지 소모가 끝난다. 그렇게 하면 중앙부의 용량 수준이 높아 되어 화살표로 나타내는 것과 같은 중앙으로부터 양쪽 박부부의 용량의 수평분포 changes이 일어난다. 또한 이 분배는 좌우 서로 행해진다는 일이 있다. 시간이 흐르면 따라서 포식의 내측(쪽 중앙부)에서는 수평분배의 온도가 높게 되어, 후속의 고온용량에 있어 용량이 빠르게 줄어드는 것이다.

(2) 용량의 향류의 탕도

일반적으로 캐비터(주로은 부위들)내의 향류의 향도는 자연스럽게 결정하는 것이며, 방안등으로 인위적으로 변경하는 것은 고려할 것이다. 또, 한번 된 탕도는 수지의 종류에 따라서 크게 변하는 일이다.

(3) 박부부에 나타난 향류의 향도

박부부의 향류의 상황은 Fig. 1-2의 실린더헤드 향류 분포에서 분 수가 있다[4]. 외상표의 박부부 위치에 10 mm(-)의 간격으로 수평방향으로 방향이 만들어진다(Figure 내의 일러스트 참조). 이것은 전반적으로 수평분배, 향류가 나타난 것 같다. 즉, Fig. 1-2는 한쪽으로부터 박부부로 향류가 들어간 용량의 용량을 진행시키고 있는 사이에 반대쪽의 보수(역주: boss, 차나 바퀴 아래부분)로부터 빠르게 용량이 없어져 용량을 시작해서 그 경계가 왼쪽으로 기어가는 것을 말하고 있다.

Fig. 1-2의 주목은 이 시점에서 향류를 정지하고 있지만, 박부부에서 있어서 향류의 용량이 올고를 진행했다고 보고, 가열된 탕도가 박부부에 존재하고 향이 급속히 되어 있는 한 용량은 앞으로 진행하고 있다고 했을 것이다. 즉, 향류는 주행내 용량의 폭주도에 휘둘리지 않고 조금이 계속되며, 전반히 향을 누르고 있는가 반복에 걸쳐있다. 이것이 복잡한 박부부물 이라도 향이 미치는 원리이다.

(4) 급냉된 것은 빠르고 빠른

다시 Fig. 1-1에 몰아가서 Figure의 C부에 담긴 용량은 최초로 캐비터내에 유입된 용량이다. C의 용량은 어느 정도 탕도 수준이 상승한 단계에서 탕도로부터 유휴해 온 용량이다. 즉, C의에 담긴 용량은 전반적인 용량에 의해 가열되었던 중앙 탕도 부분을 벗어나 탕도를 B에서 내려가, C에 거의 수평하게 향류 용량이다. B에서 B가지의 향류를 있어서 용량은 향류가 전반히 상승한 단계에서 C에 있어서는 차가 우주해서 염가할 수 있다고 할 수 있다. 혹은 급속하게 오네요성 증가서 조건이 나빠짐에 탕도바람 혹은 황도 전개가 되고 이 B에서 C에의 동분가만이 최고가 좋지만, 그 대간 하기 위해서는 전반적인 주임시간에 해야 할 수 밖에 없다. 그림에 이어한 주임시간이라 탕도와 같다.

2.3 환산의 최적주임시간

(1) Dietert의 주임시간

일본에서는 1960년경까지 많은 공장에서 미국의 GRI(Gray Iron Research Ins.)가 나타낸 향류는 S의 주임시간, S: 비해상수, W: 주요주입량, C가 있는 Dietert의 식(1)을 의지해서 온 것 같다. 그러나 이 식은 약간 사용이 있던 공장의 실험과 맞지 않았다.

(2) 유동거리에서 Dietert식을 보정

Dietert식의 식에서 작동차용 주입을 빅추어본 바, 같은 것일수록 계산치라고도 실제측정이 주임시간 간격과 강하게 결합된 경우이다. 그 차이는 캐비터내의 향류 거리와 긴축성 향류 거리로 가정을 하여, Fig. 1-3의 다수 그래프에서 탕도를 기준에 따라 정하려고 고려사례가 없다고 서술한다. 그리고 저의 식을 계산자 2.1, W의 값은 다수 그래프에 적혀져 있다. 그 이외의 식의 계산치는 2.1, W의 값을 계산자에 다수의 그래프에 적혀져 있다. 식의 식은 Y=a(X-A)로 해서 나타내면 종단의 Y=0(실수로는 t=√S/W=1.0의 산성에서 확청 X=+log(1/43=143)의 점을 통과 하고 작도의 수식이 가기와 a=1.15로 간추하게 되는 계산식으로 완료한다. 주입시간의 측정치를 Dietert식의 식의 계산치가 일치 하는 것은 1/43의 경우가 된다. 식의 식은 Y=a(X-A)로 해서 나타내면 종단의 Y=0(실수로는 t=√S/W=1.0의 산성에서 확청 X=+log(1/43=143)의 점을 통과 하고 작도의 수식이 가기와 a=1.15로 간추하게 되는 계산식으로 완료한다. 주입시간의 측정치를 Dietert식의 식의 계산치가 일치 하는 것은 1/43의 경우가 된다. 식의 식은 Y=a(X-A)로 해서 나타내면 종단의 Y=0(실수로는 t=√S/W=1.0의 산성에서 확청 X=+log(1/43=143)의 점을 통과 하고 작도의 수식이 가기와 a=1.15로 간추하게 되는 계산식으로 완료한다. 주입시간의 C가 있는 Dietert식의 식의 계산치가 일치 하는 것은 1/43의 경우가 된다.
Fig. 1-3. 주정 당초을 거리에서의 Dieter의 주입시간을 보정하는 식

(1) Dieter의 식을 개량한 Wallace&Evanse의 식

\[t_p = \frac{D}{1.417(D/1.46)} \sqrt{W_0} \]

\[W_0 \text{ 주정당초량[kg]} \quad D \text{ 평균 육박[cm]} \quad K \text{ 보정계수로 주입온도와 CE값이 결정된 경우에 Fig. 1-4에서 확인할 수 있는 육박량의 CE값[단소당량]} \]

Fig. 1-4의 그림으로 보정하는 방법의 식 (1)은, 초기과열도가 높은 경우 평균의 CE값(단소당량) 큰 값이, 주입의 큰 만큼, 평균 육박이 높은 만큼, 주입시간을 경계하는 것이 좋다는 것이다.

알서의 Biyorklund나 Trenchche의 실험과 크게 다를것은 실험적으로 얻어진 육박길이비에서 채용한 것이다. 결론은 Biyorklund나 Trenchche가 주입시간을 과열도의 2개에 비례시키는 것에 대해 Fig. 1-4에서 알 수 있듯이 과열도가 높아도 주입시간은 1.8 배 정도, 그리고 가열도의 약 0.8배에 비례하여 정도로 하고 있는 점이 크게 다르다.

(4) 주입온도는 자유롭게 고를 수 있다.

이상의 생각은 주입온도에 의해 적절한 주입시간을 고르는 것을 추천하고 있는 것은 아니다. 주입시간은 타구방안을 결정하는 것에 필요하다. 주입온도에 의해 주입시간을 고르는 것은 현실적이 아니다. 주입온도는 각종 조건에 의해 자연적으로 어느 범위에 한정된다. 이를 통해 레플루의 경우 최고온도 1450℃ 이상으로 높이는 것은 일반적으로 불가능하다. 폭발상-소형 주정운반장장에서는 공장 설계 등 관계상 주정배치온도는 1450℃ 이상으로는 할 수 없고, 1350℃ 이하로 되면 폭발 불량발생의 보안으로 주입을 멈추고 있다. 주입온도는 일반적으로 주입의 종류에 관계없이, 작업연구로서 결정되는 것이 보통이다. 주입에 의해 주입온도를 선택하는 것도 주입온도에 의해 주입시간을 조절할 필요는 현실에서의 행해지지 않는다고 생각할 수 있다. 이와 병행한 바이 같이 Fig. 1-4는 현실적이지 않고 이상을 나타낸 것이지만 Fig. 1-4을 맞다고 가정한 다음의 문제를 고려하자.

(문제) CE값 4.2의 용융에서 주입온도 \(T_p = 1673 \) K일 때 주입시간 \(t_p = 18 \)초가 적당하다고 가정한다. 그런데 CE값이 4.0으로 낮아지게된다. 같은 주입온도라도 주입시간을 어느 정도로 변경하는 것이 적당한가, 반대로 주입시간을 바꾸지 않으면 주입온도는 임때가 적당하다고 간주하는 것이 좋게 Fig. 1-4에 판단하기.

(해답) CE값 4.2, 주입온도 1400℃에서는 육박길이 90 cm, K = 0.99이다. CE값=4.0, 주입온도 1400℃에서는 육박길이는 80 cm, K=0.8이 되기 때문에 18×0.8/0.9=16.8, 즉 18
초품 16초로 조금 끓게 한 것이 좋다.

반대로 주입시간은 18초로 최초 운동성 90 cm(K=0.9)을 유지하고 하면 Fig. 1-4에서 주입온도를 약 1440°C로 높이면

이것이 좋다는 것이 된다. 경향으로 그렇게 되는 하나의 이유

(5) 식 (1)의 이론적 근거는 없다.

식 (1)에서 무엇이든 물리적 근거를 내어놓으려 했던 현장

의 사례가 있다. 경향으로서 얻어진 결과에 물리적 근거를

구하는 것은 불가능한 경우가 많다. 단위 흔드는 것이

아니지 않으나, 유동성에 따른 보정계수 K값이라도 유동성의

실정의 비교경과로서 이것이 주입시간의 보정치로서 유효하지

아닐자는 병로계이다.

(6) 최적주입시간은 존재하지 않는다.

그럼에도 물리적인 근거가 가진 최적주입시간은 있는가, 나는

생각하고 있다. 그러나 전혀 근거가 없는 것을 실험하

는 것이 불안이 있으므로 최대의 안전을 위해서 듣(1)을 염기해 두

았었다.

주입마지에 최적주입시간이 있다고 하는 근거는 없다는 다음

의 정성적 경향은 과일에 빼 필요가 있을 것이다.

유동성 불량을 생겨지지 않기 위해서는 주입온도를 낮게

하는 것이 좋지만 높게 하면 소작 등의 결함이 낮은 위험

이 있다. 또 용해설비에 의해 주입온도범위에서도 존재가 있다.

주입시간을 짧게 하면 작업성은 좋지만 탕구체가 두꺼워

되어 경제성이 나빠지게 된다.

(7) 주입시간을 고르는 방법의 결론

주입작업에 지장을 가져오지 않는 범위에서 주입시간을 조

성하는 것은 급하게 하는 것으로, 하지만 유동성 불량의 위

험이거나 작업에 지장이 생기면 양간 짧게 해도 좋다. 주입시간

의 자유도는 매우 많다고 생각되어진다.

원래 최적주입시간이란 것은 존재하지 않고 “용해중에 주

입시간의 범위가 존재한다”라고 느끼는 것이 생각하고 있다. 그러나

근거 매개변수 주입시간이라도 최대로 결정하지 않은 때에는 방

안결정 작업이 진행되지 않는다.

주입시간 결정되면 그 주입시간을 얻기 위한 탕구방안을 결정

하면 좋다. 그 방법은 ‘탕구방안의 수학적’이라고 설명한다.

Q. 유동성이에 대해서: Fig. 1-4의 유통성이 시험 주임의

홍의 크기에에 대해 다르게 될 것이지만, 시험 주임의 사이즈

은 결정되어 있다. 또 CE값 구하는 법이 용고의 경우와

다른 것은 왜인가.

A. Fig. 1-3의 유통성은 그들이 실험에 제공한 spiral형 유

동심시험주임에서의 유통값(cm²)이다. 시험주임이 다르면 유통

같이는 다르게 된다. Fig. 1-4는 자사공장의 용고를 만하

그들의 시험주임에 희려 멀리 나오므로 그런지 이상성이 됐다는

경우가 주입온도를 Fig. 1-4에 그렇게 없을 수 있는 것이다.

그렇다면 이는 유통 값이 사용하는 것이 아니고 CE값 4.5

주입온도 1400°C의 경우(혹은 CE값 4.2, 1450°C의 경우)의

유통값이 100 cm²와 비 K(무차원적)수치를 사용하는 것이

어서 실험주임의 차이에 의한 영향은 없어지는 것이다.

CE값이 응고의 경우와 약간 달라지는 것에 대해서 그들은

탕 환호의 경우는 (1/3) Si도 (1/4) Si로 한 측이 설계에 잘

맞는 것이라고 서술하고 있다.

Q. 여러 개 펨때 경우의 주입시간: 주입내에 2개 이상을 동시

해 주입하는 경우에는 주물 1개당의 주입시간을 생각하는가

아니면 1살차마다의 주입시간을 생각하는가.

A: 각각의 주물에 최적주입시간이 존재한다고 생각했던 시대

에서는 1개당의 주입시간이라고 하지 않으면 도리에 맞지

않는다. 그러나 작업성을 우선하기 위해서 탕구로 연결한

모든 것 1개의 주물이라고 생각해서 1살차마다의 주입시간

을 선택하는 것이 적절이라고 생각되어진다.

3. 이물질의 제거

3.1 주방반이에 있어 이물질의 부상

(1) 주방반이에서 어떤 것은 큰 이물질 뿐

용량이 포함된 상해. 개체부품의 이물질은 레드마에 있는

사이에 부상시켜서 제거할 수 있다. 중간 물체로는 약간

용량이 서서 주입되어 벌어진다. 주방반이는 교반상태로 있으므로

부상물체에 적당히 하지 않다. 주방반이에 잡힌 것은 큰

당이어 뿐이다. 소량의 이물질의 제거까지는 기대할 수 없다.

주방반이에서 얻어지는 것은 큰 이물에 한정되어 있으며 주

방반이의 이물질 부산물리 효과적으로 하는데는 주방반이

내용물해를 벌리 놓고, 남자기에 유동을 급강시킨다는

안정한 주방작업이 요구된다. 그것이 습관자 위주작업 요령으

로 되어있다.

Q. 기민한 주방반: 이물질 분리를 위해서는 기민한 주방조작

이 필요로 하지만 안전하고 기민하게 조작하기에는 어떠한

주방장치를 고르는 방법은 없다.

A. 수동주방의 경우: 스토리식 태론은 유량의 조절을 할 수

없다. 경사태는 유량 조절이 용이하다. 특히 드럼형 태론은

반려가 좋고 경사 태론의 감속을 작게 할 수 있으므로 비

적 기민한 경사가 가능하다.

자동주방의 경우: 전동 경사, 기밀성에 결림이 있는

지자들은 주방구 기계적 위치는 경사목적을 작근 2단 설

Fig. 1-5. 초기유량을 높이는 이상적 주방
한편으로 동시에 벌어들여 2,3초 후에 1단계를 복원시키는 경통 중 2단 승강 자동주입기를 고정한다. 이 방법을 채용하면 Fig. 1-5의 유동구간과 같이 기초의 유동은 크지만 다음의 1단계의 복원으로 주입방이의 유동계를 직접하게 유지할 수 있다. 투입된 주입작업자는 이 Figure와 같은 유동구간이 되도록 순 가감으로 유동을 조절하고 있을 것이다.

3.2 탕구개에 있어서 응용림의 포착

탕도는 중요한 응용림 포착강이다. 주방면에서 포착하여 얻어지지 않은 슬래그, 개제물, 모래등의 응용은 탕도를 통과하는 사이에 잡혀서 주업구에 들어가지 않도록 한다. 그 방법을 다음과 같이 나타낼 수 있다.

1) 용량과의 밀도차를 이용해서 분리시킨다.
2) 세라믹포 활성을 동과시키면서 잡는다.
3) 또한 탕도에서 부상 분리시키는 방법과 스케일티드라고 불리는 사이클론에서 완벽분리시키는 방법이 있다.

3.3 탕도에서의 응용림 부분분리 기구

(1) 탕도의 조용한 환호, 0.5초의 부상시간

탕구개 중에서 탕도만이 응용림을 부상 분리시킬 수 있는 유일한 장소이다. 용체내에서의 응용림의 부상속도는 용체내 이물질의 종류(밀으로 함), 부력(위로 함), 부상내 성기의 저항(밀으로 향함)과의 균형에서 결정할 수 있다. 그것에 의하 면 큰 입자의 응용림입수록 그 전이의 영향이 강해져 부상속도가 크게 된다. 작은 입자의 수를 두어가야 한다.

그러나, 일부 부상 분리시켜 날짜가 있으면 다시 용체내 에 혼입된다. 수평 환호, 탕구내에서는 조용한 환호로 되기 쉽고 혼입은 잠이거지 어렵다. 부상 분리에 성공한 좋은 장소이다.

부상한 응용림은 주입구에 남지 않기 위해서는 Fig. 1-6에 나타낸 바와 같이 이물질이 주입구 입구의 위를 통과하면 좋다. 부상하는 높이의 편차를 생각해서 주입구보다 중분히 높은 h의 높이까지 부상시키는데 부상속도를 w로 한다면 시간 t가 필요하되 그 사이에 용량은 유속v로 거리 vt=만을 진행하게 된다. 즉,

$$h = wt = w \cdot \frac{v}{L}$$

(2)

의 관계식이 성립한다. 식 (2)는 거리 l에 긴 만큼 모든 유속

v가 높은 만큼 이물질이 잘 부상하는 것을 나타내고 있다. 바꿔 말하면 부상에 도움이 되는 거리 l을 줄으면 탕도의 유속v를 작게 할 필요가 있지만 그것들도 한계가 있다. 미국의 GRI(Grey Iron Research Ins.)[8]에서는 탕구로부터 15 cm까지는 주입구를 붙이지 않고, 그 사이의 유속을 30 cm/s로 하도록 추천하고 있다. 즉 탕구로부터 최초 주입 구까지의 사이를 용량이 초르는 시간을, 0.5초 이상 주는 것을 추천하고 있게 된다.

(2) 단지형 탕구개의 효과

탕구개 부근의 응용에는, 요동이 남는다. Fig. 1-7에 나타내는 탕구개의 모양에 몸을 흘러내려 관찰하면, GRI로 정한 Fig. 1-8(6)의 단지형의 탕구개가, 원래의 요동을 빠르게 고치는데 빠르다는 것을 알 수 있다. 용량이 탕구를 감히는 사이에 증거로 가속되어, 그것이 탕구개에 충돌한다. 다음에 용량은 측벽에 충돌해서 용량은 위로 향하게 바꾸게 되므로 수평방향으로 전방향으로 제어되는 용량은 향하기 때문이다.
의 탕도의 유속이 제어되고 탕도내의 호흡을 가리워하는 것이 다. 이 점은 중요하다.

Fig. 1-8(b)와 같은 L자형 탕구지를 이용한 경우의 환호에
는 탕구지 경유의 기체를 가장적 탕도의 재면을 통행 할 수
으로 달리한다. L자형 탕구지는, 탕도의 호흡을 유연하게 한다.
L자형은 구조가 단순하다는 이외에 바람직한 점이 없다.
3) 포착 효과는 스크루시드에서

탕도에서 실제로 재료들이 부상 분리되어 있는가 여부를
조사하는데는 유해강의 스크루시드로 라탄과 탕도의
스크루들은 부분적으로 알 수 있다. 다음의 갈립 1에서 나타내는
GIRI 탕구방안에 대한 탕도에서는 탕구지 가까운 탕도에서 재
료들이 부분적으로 있는 것을 2할 정도로 발견한 일이 있다. 표
면에 부착하고 있기 때문에 곧 바로 알 수 있다.
4) 탕도를 길게 갈는 경우
탕도의 깊이와 슬래그의 부상 분리효과의 관계를 다음의 문
제에서 생각해보자.

[문제] GIRI방문방안에서는 탕도에서 슬래그를 부상 분리시키기
기 위해 진술한 바와 같이 탕구지로부터 15cm의 사이에
주입구를 둘러지 않고 탕도의 유속을 30cm으로 하고 있다.
따라 Fig. 1-9와 같이 탕구지로부터 주입구까지의 거리가
25cm라고 한다면 탕도의 유속을 얼마나지게 됨을 알 수
있다.

[해답] 탕도의 유속을 높이면 그만큼 탕구지가 경영에 되어
경계적이다. 유속 30cm로 거리 15cm가 필요하다는 것은
0.5초간의 슬래그 부상시간이 필요하다는 의미이다. 25cm
0.5초에 호른다면 탕도의 유속은 \(v = 25/0.5 = 50 \text{ cm/s} \) 가 적절
하다는 것이 된다.

해답으로서는 이상으로 좋지만 유속이 증가하는 만큼 호흡이
호트러져 슬래그의 부상 분리효과를 잃는다. 탕도의 유속
50 cm/s에서는 호흡이 매우 요구하기 쉬운 상태로 생각하는
것이 안정한다. 40 cm/s 이상으로 하는 것은 될 수 있는 한
피하는 것이 좋다. 혹은 탕구지로부터 15 cm만은 유속 30 cm/s로
적합하고 그 이상의 것은 유속을 빠르게 하는 방법도 있다.

* * *

물론 1 GIRI의 탕구방안

Fig. 1-10의 과상이 탕도 호크크방각(handc Kak gating
system)으로, 유산이 탕구 호크크방각(Sprue choke gating
system)이다. 탕구는 어느 것이나 밑으로 가는 것에 따라 가
능하게 되는 경사탕구이다. 탕도는 탕구지로부터 직후로 나누어
져 있지만, 그 경우의 탕도-주입구의 단면적은 좌표를 함께
하고 탕도 호크크방각의 경우, '탕구의 하부의 단
면적은 테두리의 단면적과 같은 크기로 한다'라고 쓰여
져있다. 따라서 탕구 호크크방각은 실질로는 탕구와 탕도의
2
조입시에 삼각형도도 삼각형도도 수도 없이, 탕구가 건 경우에는 이 2간
조일은 효과가 있지만, 등을 홍시에 파열해 보면 탕도내의 호
흡의 효과가 크다. 따라서 탕도 호크크방각을 나선 추천하지
않는다.

GIRI방문방안의 특성은 탕구방(탕구 호크크, 탕도, 주입구의
단면적이)가 1:3:2 혹은 1:4:2로 다른 방식과 비교해서 탕도
단면적이 큰 것 없 주입구 0단면적이 다른 방안의 2배 정
도나 큰 것이다. 이것들의 이점이 자세 명확해진다.

* * *

Gating Ratio(탕구비) = 1:3:2

Gating Ratio = 1:4:2

Fig 10. GIRI의 탕구방안
3.4 탕구, 탕도, 주입구의 결합
세부적 구리로 이동점 포착효과가 반한다. 이동점을 탕도에서 포착해서 주입구로부터 캐비티내로 유입하지 않기 위해서는 탕
도나 주입구에 Fig. 1-11에 나타난 마와 같은 배려가 필요할
것이다.
(a)는 탕도내의 선형 헤름을 퍼지는 방향구의 체에 대해서이
다. 탕구와 탕도의 중심선이 붙어있으면 선형효과가 된다.
단지형 탕구는 탕구의 헤름면의 폭이 적어 적은 것을 이
유로 현장에서 제재되때 잘리버트 적이 있었다. 한편안 잘린
형의 헤름에 물을 훼손 관광하면, 탕도나 체화 헤름이 되어
있는 것을 알 수 있다. 자세한 방법으로 양면을 자르는
쪽이 좋다.
(b)는 물질이 있는 탕도의 경우로 탕도단면을 원형으로 하면
중심부의 유속이 적치보다 크기 때문에 생기는 원심력의 차이
로 헤름 헤름이 생긴다. 단형단면(우성단면)을 끼우면 한다.
(c)는 주입구의 끼이는 방법에 대해서이다. 주입구를 탕도의
위쪽으로 끼이면 일부러 부상 분리할 이물질을 정중하게 주입
물 속에 인도하게 된다. 전설 이물질 부상 분리구로부터 주입
구는 탕도측면의 낮은 위치에 붙는 쪽이 좋다. 참시 주입구,
즉 판 주입구를 보는 일도 효과가 있다고 생각되어진다.
(d) (e)는 상형에 탕도를 붙여, 하형에 주입구를 잘라
있던 손 조형을 갈상이라고 생각되지만, 최초로 훼손 탕 섬
단의 용량이 주입구로 훼손되어오기 때문에 부작용적이다.
탕 섬단의 용량은 탕도 앞까지만 보내져서 정지시키는 것이 바
람직하다.
3.5 스위프트
(1) 의중간의 이유에 의한 작작

Fig. 1-12와 같은 스위프트에서 이물질을 원심분리시키는
방법도 주로 이용되었다. 압력 m에 걸리는 원심력 F는,
\[F = \frac{mv^2}{r} \] (회전반경, v: 움직임의 속도)이므로 반경이 적은
만큼 더 유입속도가 큰 만큼 원심력이 크게 되어 스위프트를
.Formatting하게 할 수 있어 적합하게 생각하기 쉽지만 원심분
리에는 원심력 외에 시간도 필요하다. 소형이 되면 분리에 필
요한 시간은 짧게 된다. 또 원심분리와 동시에 부상분리도 일
아나고, 그 양으로 소식이 적은 만큼 효과는 빠지지게
된다.

복잡한 구조는 설계자의 번거로움이라는 다른 결과를 가져온
일도 있다. 예를 들어 스위프트내에서 용량이 한반 제한
하는 것을 기대해도 실제로는 Fig. 1-11(1)의 원쪽 클
Figure 와 같이 결합 부분으로 나오고 머는 가능성으로 봤더라도 말할
수 없다. Fig. 1-12와 같이 임의의 용구에 단단히 붙여 봤 1
회전시킬 수 있음직도 모른다.

1회전 한다고 해도 제한하는 같은 정도의 이물질 분리효과를
입기에 스위프트보다도 탕도에 의한 부상 분리의 쪽이 적
은 체적으로 끝날 것으로 생각된다.
(2) 압정 응용으로 이용
스킬가이트의 유속을 크게 하기 위해서는 압정 냄개가 개개 개 편히 잘려지거나 충구는 유속이 낮아지므로 단면을 두껍게 한다. 이 관계는 압정의 경우와 같다. 스킬가이트를 압정 응용의 목적으로 분리하면 이로써 적합하지 않음과 생각된다.

3.6 세라믹 풀필터
(1) 풀록의 저장이 늘어나는 것에 주의
세라믹 풀필터에 의한 이물질 제거의 효과는 극히 높고, 각종의 풀록이 제거되어있다. 풀록의 집입으로 풀록의 저장이 늘어나는 것을 피하기 위해 필터설치소통에서는 Fig. 1-13과 같이 필터의 단면적을 2배로 늘어난 것에 권장하고 있었다.
(2) 경계형 스키미와의 차이
풀필터를 탕구의 하부에 붙여 있는 예를 보았다. 이 위치에서는 적은 속도를 위해 일부분 포착한 습기가 다시 후속의 유속으로 빠져나가 탕구를 위점한다. 초오르 대신에 사용한다고 하였던 2구멍 또는 몇 구멍의 경계형 스키미와는 정확히 맞는 것이 아니다. 그것이 풀록으로서의 효과가 있다고 잘못 알고 있는 책자가 있어 2 mm 정도 이상의 두 구멍에서는 이물질 포착의 기능을 하지 않아도 된다.

Q: 자주 사용되는 탕구에 Fig. 1-14(a)와 같은 탕구가 자주 사용되는지만 Giri의 탕구자나 그보다도 더 높고 탕구를 이용하고 있다. A: 독일의 어느 기업으로부터 배웠다고 하는 어느 나라의 주물공장에서도 같은 Figuro와 같은 탕구자로 연속되었다. 그들 이 필터에 넣기 전에 몇 품종의 커프는 어떠한 목적이기로 점으로 '기비의 곳에서 완벽한 의의 이물질 분리기를 시키기 위해'라는 단어가 들어온다. 이물질은 용융보다 밀도가 작기 때문에 이물질보다도 용융이 강한 완벽성을 받기를 위해서 이물질은 반대로 내측에 올 것이다. 저지로 이 탕구자의 이점을 는다면 탕구의 속도는 더욱 어렵고의 높은 효과가 될 도형의 L형 탕구자보다는 원형 꼭고 Giri의 탕구자에 가깝다고 생각되는 점이 있다. 그렇지 않다면 Giri의 탕구를 제 보다는 경계형 스키미와의 차이에 유의할 것이다.

(2) Biyorklund : Modern Casting, Apr. (1962) 68.
(4) 松田政夫：铸造 61 (1989) 12, 882.
(5) 松田政夫：铸造 62 (1963) 2, 21.
(7) 松田政夫：铸造工学 71 (1999) 7, 443.
(9) 日本総合鑄造センター：文献8の付，研究調査報告 25 (1964) 67.