Photocatalytic effect for the pitch-coated TiO2

Pitch 코팅된 TiO2에 대한 광촉매 효과

  • Received : 2006.06.17
  • Accepted : 2006.08.01
  • Published : 2006.08.28


Pitch-coated anatase $TiO_2$ typed was prepared by $CCl_4$ solvent mixing method with different mixing ratios. Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the pitch-coated $TiO_2$ sample series showed a good adsorptivity and photo decomposition activity. The BET surface area depends on the pitch contents, which was made by changing the mixing ratios of the pitch with the raw $TiO_2$. The SEM results present to the characterization of porous texture on the pitch-coated $TiO_2$ sample and pitch distributions on the surfaces for all the materials used. From XRD data, a weak and broad carbon peak of graphene with pristine anatase peaks were observed in the X-ray diffraction patterns for the pitch-coated $TiO_2$. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of pitchcoated $TiO_2$ with Uv/Vis spectra between absorbance and time could be attributed to the homogeneous coated pitch on the external surface by $CCl_4$ solvent method.


porous carbon;BET surface area;SEM;XRD;EDX;photocatalytic activity


  1. D. F. Ollis, E. Pelizzetti, and N. Serpone, 'Photocatalysis fundamentals and applications', ed. N. Serpone and E. Pelizzetti, Wiley, New York (1989)
  2. F. B. Li and X. Z. Li, Appl. Catal. A: Gen, 5910, 1 (2001)
  3. S. J. Parkand K. D. Kim, J. Colloid Interface Sci., 212, 186 (1999)
  4. N. Negishi and K. Takewchi, Mater. Lett., 38, 150 (1999)
  5. K. Kinoshita, 'Carbon-electrochemical and physicochemical properties', ed. B. Warren, John Wiley, New York, (1998)
  6. A. K. Datye, G. Riegel, J. R. Bolton, M. Huang, and M. R. Prairie, J. Solid State Chem., 115, 236 (1995)
  7. T. Torimoto, and Y. Okawa, N. Takeda, and H. Yoneyama, J. Photochem. Photobiol. A-Chem., 103, 153 (1997)
  8. D. Beydiun, H. Tse, R. Amal, G. Low, and S. McEvoy, J. Mol. Catal. A: Chem., 177, 265 (2002)
  9. T. Torimoto, S. Ito, S. Juwabata, and H. Yoneyama, Environ. Sci. Technol., 30, 1275 (1996)
  10. Z. Ding, X. Hu, P. L. Yue, G. Q. Lu, and P. F. Greenfield, Catal. Today, 68, 173 (2001)
  11. B. J. Park, S. J. Park, and S. K. Ryu, J. Colloid Interface Sci., 217, 142 (1999)
  12. S. Ahuja and T. R. N. Kutty, J. Photochem. Photobiol. A-Chem., 97, 99 (1996)
  13. J. Matos, J. Laine, and J. M. Herrmann, J. Catal., 200, 10 (2000)
  14. A Fujishima and K. Honda, Nature, 238(7), 37 (1972)
  15. Z. Ding, G. Lu, and P. Greenfield, J. Colloid Interface Sci., 232, 1 (2000)
  16. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700-1708 (2005)
  17. S. L. Park and J. S. Kim, Carbon, 39, 2011 (2001)
  18. S. Nagaoka, Y. Hamasaki, S. Ishihara, M. Nafata, K. Iio, C. Nagasawa, and H. Ihara, J. Mol. Catal. A: Chem., 177, 255 (2002)
  19. X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 44, 325-333 (2006)
  20. N. Takeda, N. Iwata, T. Torimoto, and H. Yoneyama, J. Catal., 177, 240 (1998)
  21. M. Yoshikawa, A. Yasutaka, and I. Mochida, Appl. Catal. A: Gen., 173, 239 (1998)
  22. Y. Zhang, J. C. Crittenden, D. W. Hand, D. L. Perram, J. Solar Energy Eng., 118, 123 (1996)