Preparation of Ag, Pd, and Pt50-Ru50 colloids prepared by γ-irradiation and electron beam and electrochemical immobilization on gold surface

  • Kim, Kyung-Hee (Department of Chemistry, Hannam University) ;
  • Seo, Kang-Deuk (Department of Chemistry, Hannam University) ;
  • Oh, Seong-Dae (Department of Chemistry, Hannam University) ;
  • Choi, Seong-Ho (Department of Chemistry, Hannam University) ;
  • Oh, Sang-Hyub (Div. of Chemical Metrology and Materials, Evaluation/Organic Analysis Group, Korea Research Institute of Standard and Science) ;
  • Woo, Jin-Chun (Div. of Chemical Metrology and Materials, Evaluation/Organic Analysis Group, Korea Research Institute of Standard and Science) ;
  • Gopalan, A. (Department of Chemistry Graduate School, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Graduate School, Kyungpook National University)
  • Received : 2006.07.24
  • Accepted : 2006.08.03
  • Published : 2006.08.28

Abstract

PVP-protected Ag, Pd and $Pt_{50}-Ru_{50}$ colloids were prepared independently by using ${\gamma}$-irradiation and electron beam (EB) at ambient temperature. UV-visible spectra of these colloids show the characteristic bands of surface resonance and give evidence for the formation of nanoparticles. Transmission electron microscopy (TEM) experiments were used to know the morphology of nanoparticles prepared by ${\gamma}$-irradiation and EB. The size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by ${\gamma}$-irradiation was ca. 13, 2-3, 15 nm, respectively. While, the size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by EB was ca. 10, 6, and 1-3 nm, respectively. Cyclic voltamograms (CV) were recorded for the Au electrodes immobilized with these nanoparticles. CVs indicated the modifications in the surface as a result of immobilization.

Keywords

${\gamma}$-Irradiation;Electron beam;Ag colloids;Pd colloids;$Pt_{50}-Ru_{50}$ colloids;Cyclic voltammetry

Acknowledgement

Supported by : Science Foundation of Hannam University

References

  1. Xu, W., Xu, S., Ji, X., Song, B., Yuan, H., Coll. Surf. B, 40, 169-172 (2005) https://doi.org/10.1016/j.colsurfb.2004.10.027
  2. Wang, H., Qiao, X., Chen, J., Ding, S., Coll. Surf. A, 256, 21-25 (2005) https://doi.org/10.1016/j.colsurfa.2004.09.035
  3. Choi, S.-H., Zhang, Y.-P., Gopalan, A., Lee, K.-P., Kang, H.-D., Coll. Surf. A, 256, 165-170 (2005) https://doi.org/10.1016/j.colsurfa.2004.07.022
  4. Horvath, J., Birringer, R., Gleiter, H., Solid State Commun., 62, 319-322 (1987) https://doi.org/10.1016/0038-1098(87)90989-6
  5. Qin, X.Y., Wu, B.M., Du, Y.L., Zhang, L.D., Tang, H.X., Nanostruct. Mater., 7, 383-391 (1996) https://doi.org/10.1016/0965-9773(96)00004-9
  6. Gleiter, H., Progress Mater. Sci., 33(4), 223-315 (1989) https://doi.org/10.1016/0079-6425(89)90001-7
  7. Esumi, K., Wakabayashi, M., Torigoe, K., Coll. Surf. A, 109, 55-62 (1996) https://doi.org/10.1016/0927-7757(95)03451-X
  8. Henglein, A., Langmuir, 15, 6738-674 (1999) https://doi.org/10.1021/la9901579
  9. Yu, W., Liu, M., Liu, H., Zhen, J., J. Colloid Inter. Sci., 210, 218-221 (1999) https://doi.org/10.1006/jcis.1998.5938
  10. De Cointet, C., Mostafavi, M., Khatouri, J., Keita, B., Nadjo, L., Belloni, J., J. Phys. Chem. B, 101, 3512-3516 (1997) https://doi.org/10.1021/jp963343l
  11. Whelan, A.M., Brennan, M.E., Blau, W.J., Kelly, J.M., John M., J. Nanosci. Nanotech., 4(1/2), 66-68 (2004) https://doi.org/10.1166/jnn.2004.054
  12. Zhou, Y., Itoh, H., Uemura, T., Naka, K., Chujo, Y., Langmuir, 18(1), 277-283 (2002) https://doi.org/10.1021/la0108095
  13. Guo, J.W., Zhao, T.S., Prabhuram, J., Wong, C.W., Electrochim. Acta, 50, 1973-1983 (2005) https://doi.org/10.1016/j.electacta.2004.09.006
  14. Sawyer, D.T., Roberts, Jr. J.L., Experimental Electrochemistry for Chemists, John Wiely & Sons, p. 67 (1974)
  15. Solla-Gullon, J., Rodes, A., Montile, V., Aldaz, A., Clavilier, J., J. Electroanal. Chem., 554-555, 273-284 (2003) https://doi.org/10.1016/S0022-0728(03)00214-6
  16. Henglein, A., J. Phys. Chem. B, 104, 2201-2203 (2000) https://doi.org/10.1021/jp994300i
  17. Choi, J.-H., Park, K.-W., Park, I.-S., Nam, W.-H., Sung, Y.-E., Electrochim. Acta, 50, 787-790 (2004) https://doi.org/10.1016/j.electacta.2004.01.109
  18. Choi, S.-H., Lee, S.-H., Hwang, Y.-M., Lee, K.-P., Kang, H.-D., Radiati. Phys. Chem., 67, 517-521 (2003) https://doi.org/10.1016/S0969-806X(03)00097-5
  19. Uemura, T.; Kitagawa, S., J. Am. Chem. Soc., 125, 7814-7815 (2003) https://doi.org/10.1021/ja0356582
  20. Scholes, F.H., Furman, S.A., Lau, D., Rossouw, C.J., Davis, T.J., J. Non-Crystalline Solids, 347(1-3), 93-99 (2004) https://doi.org/10.1016/j.jnoncrysol.2004.08.267
  21. Gupta, A. K., Gupta, M., Biomaterials, 26, 3995-4021 (2005) https://doi.org/10.1016/j.biomaterials.2004.10.012
  22. Andres, R.P., Averback, R.S., Brown, W.L., Brus, L.E., Goddard, W.A., Kaldor, A., Luoie, S.G., Moscovits, M., Peercy P.S., Riley, S.J., Siegel, R.W., Spaepen, F., Wang, Y., J. Mater. Res., 43, 704-736 (1989)
  23. Tolbert, S.H., Alivasatos, A.P., Annu. Rev. Phys. Chem., 46, 595-625 (1995) https://doi.org/10.1146/annurev.pc.46.100195.003115
  24. Kapoor, S., Langmuir, 14, 1021-1025 (1998) https://doi.org/10.1021/la9705827
  25. Malik, M. A., O'Brien, P., Revaprasadu, N., J. Mater. Chem., 12(1), 92-97 (2002) https://doi.org/10.1039/b104226m
  26. Tanahashi, I., Yoshida, M., Manabe, Y., Tohda, T., J. Mater. Res., 10, 362-365 (1995) https://doi.org/10.1557/JMR.1995.0362
  27. Suyal, G., Thin Solid Films, 426, 53-61 (2003) https://doi.org/10.1016/S0040-6090(02)01294-4
  28. Li, T., Park, H. G., Lee, H.-S., Choi, S.-H., Nano Tech., 15, S660-S663 (2004)
  29. Kuk, S.T., Wieckowski, A., J. Power Sour., 141, 1-7 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.050
  30. Genzel, L., Martin, T.P., Kreibig, U.Z., Phys. B, 21, 339-346 (1975)
  31. Balan, L., Schneider, R., Billaud, D., Ghanbaja, J., Mater. Lett., 59, 1080-084 (2005) https://doi.org/10.1016/j.matlet.2004.09.016