Optimal Parameter Estimation of the ML Test Based Audio Watermark Decoder

ML 시험 기반 오디오 워터마크 디코더의 최적 변수추정

  • 이진걸 (배재대학교 전자공학과)
  • Published : 2006.02.01

Abstract

Based on the fact that audio signals in the time domain have the generalized Gaussian distribution. an optimal parameter estimation of the ML (maximum likelihood) test based audio watermark decoder. which leads to the minimal bit error rate, is Proposed. Its superiority of performance over the existing estimation and the conventional correlation based decoder is demonstrated experimentally.

시간영역에서 오디오 신호는 일반화된 가우시안 분포를 갖는다는 사실에 기초하여 BER (Bit Error Rate)이 최소가 되는 ML (Maximum Likelihood) 시험 기반 오디오 워터마크 디코더의 최적 변수추정방법을 제안하였다. 제안한 방법이 기존의 변수추정방법이나 상관관계에 기초한 디코더 보다 성능이 우수함을 실험적으로 증명하였다.

Keywords

References

  1. Christine I. Podilchuk, and Edward J. Delp, 'Digital Watermarkings, Algorithms and Applications,' IEEE Signal Processing Magazine, 33 46, July, 2001
  2. Juan R. Hernandez, Martin Amado, and Fernando Perez-Gonzalez, 'DCT-Domain Watermarking Techniques for Still Images: Detector Performance Analysis and a New Structure,' IEEE Transactions on Image Processing, 9 (1), 55-68. January. 2000 https://doi.org/10.1109/83.817598
  3. Paraskevi Bassia, loannis Pitas, and Nikos Nikolaidis. 'Robust Audio Watermarking in the Time Domain,' IEEE Transactions on Multimedia,3 (2), 232 241 June, 2001 https://doi.org/10.1109/6046.923822
  4. Mitchell D. Swanson, Bin Zhu, Ahmed H. Tewfik. and Laurence Boney, 'Robust Audio Watermarking using Perceptual Masking,' Signal Processing. 66, 337 355, 1998 https://doi.org/10.1016/S0165-1684(98)00014-0
  5. 우동훈, 정의필, '특정 주파수계수를 이용한 오디오 워터마킹,' 한국음향학회지, 22 (4). 269 275, 2003
  6. Ingemar J. Cox, Matthew L. Miller, and Jeffrey A. Bloom, 'Digital Watermarking,' Morgan Kaufmann Publishers, San Francisco, 2002
  7. Te-Won Lee, Independent Component Analysis (Kluwer Academic Publishers, Boston, 1998)
  8. Stephane G. Mallat. 'A Theory for Multiresolution Signal Decomposition: The Wavelet Representation,' IEEE Transactions on Pattern Analysis and Machine Intelligence, 11 (7), 674-693. July, 1989 https://doi.org/10.1109/34.192463