Stereo Object Tracking and Multiview image Reconstruction System Using Disparity Motion Vector

Jung-Hwan Ko* Regular Member, Eun-Soo Kim* Lifelong Member

요 약

본 논문에서는 작용적 시차 움직임 벡터에 기반한 스테레오 물체추적 및 다시점 영상복원 시스템을 제안하였다. 즉, 제한된 시스템에서는 스테레오 입력영상 시점으로부터 작용적으로 추출된 시차 벡터로부터 프레임간 작용적 시차 움직임 벡터를 구한 다음 이를 이용하여 각 프레임에서 표적물체가 존재하는 영역 및 위치좌표를 효과적으로 검출하였다. 또한, 이를 프레임간 표적의 이동거리 좌표를 구하여 최종적으로 편/일트를 재생해 줄으므로써 표적 물체를 추적하였다. 256x256 픽셀 크기의 스테레오 영상 20 프레임을 사용한 물체추적 실험 결과, 표적 물체의 실처리치와 실험을 통해 얻은 이동범위 간의 평균 에러율이 약 3.05%로 낮게 나타남으로써 본 논문에서 새로운 제안한 작용적 시차 움직임 벡터 기반의 스테레오 물체추적 시스템의 실질적인 품질 가능성과 영상복원 기법을 사용하여 이동 물체의 3차원적 인체 디스플레이 또한 가능하다.

Key Words : 3D tracking, Disparity estimation, stereo camera, pan/tilt

ABSTRACT

In this paper, a new stereo object tracking system using the disparity motion vector is proposed. In the proposed method, the time-sequential disparity motion vector can be estimated from the disparity vectors which are extracted from the sequence of the stereo input image pair and then using these disparity motion vectors, the area where the target object is located and its location coordinate are detected from the input stereo image. Being based on this location data of the target object, the pan/tilt embedded in the stereo camera system can be controlled and as a result, stereo tracking of the target object can be possible. From some experiments with the 2 frames of the stereo image pairs having 256x256 pixels, it is shown that the proposed stereo tracking system can adaptively track the target object with a low error ratio of about 3.05 % on average between the detected and actual location coordinates of the target object.

1. 서론

현대문명의 발달로 방사능 지역, 우주공간, 심해저 등 인간의 접근이 힘든 극한의 작업환경에서 로봇을 이용한 작업수행이 점차로 있다. 이러한 로봇 시스템을 이용한 원격작업을 원활하게 수행하고 작업자가 현장의 상황이나 작업 전개를 보다 명확하게 파악함으로써 작업의 효율을 극대화하기 위해

※ 본 연구는 정보통신부 및 정보통신연구진흥원의 대학 IT연구센터 지원사업의 연구결과로 수행되었다(IITA-2005-C1090-0502-0038)
* 광운대학교 차세대 3D 디스플레이 연구센터 (misagi@explore.kwangwoon.ac.kr, eskim@daisy.kwangwoon.ac.kr)
서는 사람이 마치 현장에서 직접 작업하는 것처럼 느끼도록 하는 것이 매우 중요하다. 이를 위한 접근 방법으로 최근, 자동 물체추적 시스템에 인간의 시각을 모방한 스테레오 카메라 시스템\(^{(1)}\)을 적용한 새로운 3D 로봇비전 시스템에 대한 연구가 활발히 진행되고 있다. 이러한 3D 로봇비전 기술에는 입체 시각을 부여하는 2차 카메라 기술, 스테레오 입력 영상을 처리하여 표적물체를 인지하는 물체인식 기술 그리고 표적물체를 연속적으로 추적하여 관측자 가 표적물체를 추적, 감시할 수 있는 스테레오 물체 추적(stereo object tracking) 기술 등이 포함된다. 일반적으로, 영상적 기반의 일반 물체추적 시스템에서, 두 눈의 초점면에 표적물체의 시점이 이동하지 않게 되면 표적물체가 두 개로 겹쳐 보이게 될 경우 눈의 피로감 가중과 작업효율 저하를 가져오게 된다. 따라서, 추적물체에 스테레 오 시시\(^{(2)}\)가 존재할 경우에는 이를 제거하게 되는데 이것을 추적 제어(convergence angle control)\(^{(3)}\)라고 한다. 즉, 스테레오 물체추적 시스템에서는 기존의 2차원 물체추적 시스템과 달리 추적물체의 이동함에 따라 두 카메라의 시점을 3차원 공간의 동일점 상에 일치시키는 추적 제어 기능과 스테레오 카메라의 창각 및 렌즈를 제어하여 사람의 눈동자 영역과 같이 추적물체가 항상 좌, 우 카메라 시야(FOV: field of view)의 중앙에 놓이도록 하는 기능 등을 추가한다. 따라서, 기존의 스테레오 물체추적 시스템에서 추적물체의 추적시 및 FOV의 효과적인 제어를 위해서는 스테레오 입력영상상에서 추적물체의 정확한 위치좌표의 추출을 위한 영상처리 기술과 추출된 좌표값에 따라 실시간으로 동하는 패밀트 제어기술이 필요하다. 그러나, 실질적인 스테레오 물체추적 시스템에서는 입력영상의 배경이 복잡하고 변화가 많으므로 표적물체의 추출에 많은 어려움이 있다. 더욱이, 동일한 표적물체라도 배경에 따라 표적물체의 상대적 영향이 바뀔 수 있고, 다른 물체나 표적이 의해 가려질 수 있는 등의 주변환경 변화에 능동적으로 대처해야 하는 기술이 요구된다. 또한, 추적된 영상의 입력 디스플레이를 위한 원격 통신의 경우, 블록커스트 지원 및 네트워크와 같은 확장성이 있는 하드웨어 시스템의 요구와 이를 뒷받침하기 위해 상호 환원화 소프트웨어 개발의 한계가 있으며\(^{(4)}\), 영상 전송에 있어서도VIC에 근거한 구형 압축방식에 의존하여 300kbps 수준의 2차원 영상만을 전송할 수 있는 문제가 있다. 또한, 기존의 스테레오영상의

화상신호에 기반을 두어 개발된 대부분의 3차원 화산전송기술은 화질과 속도, 전송방법 및 화면관리에 따른 네트워크 운영에 대한 추가적인 비용 등에 능동적으로 대처하려는 많은 어려움이 있다. 따라서, 본 논문에서는 적응적 시차 움직임 벡터 검출기법을 사용하여 순차적인 스테레오 입력 영상의 진행 및 복잡한 배경으로부터 이동 표적의 시차 및 시차 움직임 벡터를 검출한 뒤, 이를 통해 추출된 표적의 위치값에 따라 시각적 및 패밀트 제어가 실행되고, 제어된 시차정보와 한쪽 영상만으로도 수신단에서 적응적인 스테레오 영상복원이 가능한 새로운 스테레오 물체 추적 및 영상복원 시스템을 제안하고, 그 실험결과에 대해 논의하고자 한다.

II. 적응적 시차 움직임 벡터를 이용한 스테레오 물체추적 및 영상복원 시스템

그림 1은 본 논문에서 제안된 적응적 시차 움직임 벡터에 기초한 실시간 스테레오 물체 추적 시스템의 환경도를 나타낸 것으로, 적응적 시차 추정 단계, 이동 물체의 검출 및 좌표 추출 단계 그리고 스테레오 물체 추적 단계 및 전송된 수신 단계의 3차원 영상 복원 단계로 이루어진다.

![그림 1. ADMIV에 기반한 스테레오 물체추적 시스템](image-url)

즉, 제안된 방법에서는 순차적인 스테레오 입력영상의 시차 정보로부터 적응적인 시차 움직임 벡터를 추출한 다음 기존의 순차적인 2차원 영상 시퀀스의 움직임 추정(motion estimation)\(^{(7)}\) 방식을 이용하여 각 프레임에서 표적물체가 존재하는 영역과 그들의 위치좌표를 검출하게 된다. 또한, 검출된 영역에 속한 두 프레임간 표적물체의 이동거리 좌표를 자동물체 추적 장치인 패밀트 시스템의 제어권으로 변환하여 동시에 적응적인 표적물체의 추적 기능을 수행하게 된다. 또한, 시각적 및 추적 제어된 스테레오 영상의 시차정보와 좌측 영상을 수집시에 전송한 후, 시차 정보를 이용한 영상복원 기법\(^{(8)}\)을 이용하여 우측 영상의 복원 및 다시점 영상 생성

167
성을 통해 최종적인 3차원 스테레오 문제 추적을 수행하게 된다.

2.1 적응적 시차 추정(1단계)
본 논문에서는 입력된 영상으로부터 시차정보를 추출하기 위한 비용함수로 제안한 것을 늘려나가지만 보다 정확한 시차 추적을 위해 MSE(mean square error)를 사용하였다[10]. MSE 함수는 식 (1)과 같이 주어지며, 식에서 が, が는 불확 또는 화소의 크기들, が, が와 와는 좌상상의 블록과 이에 대응하는 우영상의 블록을 각각 나타낸 것이다.

\[
MSE = \frac{1}{N_x N_y} \sum_{i,j=1}^{N_x N_y} [I(i,j) - I(i+d, j)]^2
\]

(1)

그림 2는 입력된 스테레오 영상의 에피폴라(epipolar) 선상에서 좌상상과 우상상간에 서로 대응되는 블록을 찾는 과정을 나타낸 것이다. 이는 이는 일정한 크기의 블록으로 나눈 후 입력의 블록의 대응이에 대응하는 같은 에피폴라 선상에 존재하는 우영상에서의 일치점을 일정한 탐색범위(±S)내에서 찾는 과정을 보여준 것이다.

그림 2. 에피폴라 선상의 대응 블록 탐색도

식 (2)는 그림 2에서 표현된 탐색 범위를 나타낸 것으로, ±S는 우영상에서 대응되는 블록 또는 화소를 찾는 탐색범위를 나타내고, と と는 각 적용적 시차추정시 좌상상에서의 블록의 시작점을 각각 나타낸 것이다.

\[
S = \{ (x,y) | (x_0 - S_x \leq x \leq x_0 + S_x + N_x), \ (y_0 \leq y \leq y_0 + N_y) \} \]

(2)

따라서 탐색범위 ±S 내에서 MSE를 최소로 하는 블록을 좌상상과 평행한 우영상의 블록으로 선택하게 되며, 우영상과 좌상상간의 차이로 그 블록을 대표하는 시차값을 얻게 된다. 즉, 좌상상 영상을 기준으로 한 우측영상과의 시차는 식 (3)과 같이 주어지게 된다.

\[
d_{ij} = \arg \min_{\alpha \in [0, 1]} \sum_{i,j=1}^{N_x N_y} [I(i,j) - I(i+d, j)]^2
\]

(3)

여기서, が는 우영상, が는 좌상상, が는 탐색범위 내의 시차값을 각각 나타내며, は が의 각 자변 が, が의 크기의 변화를 나타낸다. 식 (3)에서 얻어지는 시차벡터는 블록을 대표하는 값으로 시차정보를 추출하는데 사용된다.

2.2 이동 물체의 검출 및 위치채점 추출(2단계)
1단계로부터 검출된 시차정보로부터 시차벡터 간의 음직임 차이값인 적응적 시차 음직임 벡터(ADMV : disparity motion vector)를 추출할 수 있으며, 검출된 ADMV 값을 효과적으로 이용함으로써 이동물체의 영역과 그 위치값을 얻을 수 있다. 즉, T-1 프레임의 시차벡터 T 프레임의 시차벡터 사이의 관계는 마치 기존의 2차원 비디오 영상 시스템에서 연속된 두 프레임 사이의 관계와 같기 때문에 ADMV값은 물체에 대한 3차원 입체정보뿐만 아니라 추적물체의 위치정보도 가지고 있다[11-12].

그림 3은 시차지도에 나타난 후보 영역의 경로(candidate area)들에서 실제 물체가 있는 영역을 판단하여 물체를 검출하는 과정을 보여준 것이다.

그림 3. 특정값에 의한 적응적 시차검출을의 흐름도

그림 3에서 후보영역이라, 물체의 음직임 때문에 생기는 영역을 말한다. T-1 프레임의 시차벡터를 Dp라고 하고 T 프레임의 시차벡터를 Dc라고 할
대, Dp와 Dc를 비교해 보면 물체의 움직임에 따라 백터간의 변화가 큰 백터들의 영역이 Dp에서 2개, Dc에서 2개가 각각 나타난다. 또한, 각각 2개의 영역들은 연속된 시차 백터간의 비교를 통하여 찾아낸 영역이기 때문에 T-1 프레임에서의 후보영역 1(Cand1)과 후보영역 1' (Cand1')은 T 프레임에서의 후보영역 2(Cand2)와 후보영역 2' (Cand2')와 서로 유사한 위치에서 발견된다. 따라서 이렇게 얻은 4개의 영역 중 물체가 있는 실 영역(real area)을 각각 찾아내서 물체의 거리좌표로 읽게 되고 물체의 이동 방향을 알게 된다. 후보 영역 중 물체가 존재하는 2개 영역은 서로 비슷한 값을 가지게 됨으로 유효도 측정으로 물체가 존재하는 실 영역(real area)과 물체가 존재하긴 많은 영역에 의해 상대적으로 값 이 변하여 검출되는 헛 영역(false area)을 구분 할 수 있다. 본 논문에서는 이러한 두 영역도 신호를 비교하는 비용함수로서 초기 시차정보를 찾아 널 때 사용했던 MSE 방법과 유사한 방법을 사용하였다. 일반적으로, 실제 물체가 존재하는 2개의 영 역간에는 높은 상관관계가 나타나는데 이를 이용하여 실 영역을 검출할 수 있다. 즉, 식 (4)-(7)와 같이 후보 영역들간에 비용함수를 적용하여 그 값이 최소가 되는 두 영역을 각 프레임에서의 실 영역으로 판단할 수 있다. 식(4)-(7)의 두 영역의 좌표를 구해 이들 좌표의 차이인 표절 물체의 상대적 이동거리를 얻어내고, 두 영역의 좌표값 차이를 통해 표절 물체의 이동방향을 잡아내게 된다. 결국, 식 (4)-(7)과 같은 4가지 조합의 경우에 대해 그 값이 최소가 되는 경우를 선택하고 그 비용함수를 구현하고 있는 두 후보 영역을 각 프레임에서의 실 영역으로 결정하게 되며, 실제의 물체영역이 각 프레임에서 검출되며 그 위치 좌표 및 두 영역간의 이동거 리 좌표값과 표절 물체의 이동방향 등이 계산되어지고, 최종적으로 스테레오 입체 카메라 시스템에 탑재된 펜더블트로 전달하게 된다.

\[
\frac{1}{m \times n} \sum_{m,n} \sum_{i=1}^{n} |D_C(x_m, y_n) - D_N(x_m, y_n)|
\]

Case 1: Cand1-Cand1' = (4)

\[
\frac{1}{m \times n} \sum_{m,n} \sum_{i=1}^{n} |D_C(x_m+1, y_n) - D_N(x_m+1, y_n)|
\]

Case 2: Cand1-Cand2' = (5)

\[
\frac{1}{m \times n} \sum_{m,n} \sum_{i=1}^{n} |D_C(x_m, y_n+1) - D_N(x_m, y_n+1)|
\]

Case 3: Cand2-Cand1' = (6)

\[
\frac{1}{m \times n} \sum_{m,n} \sum_{i=1}^{n} |D_C(x_m+1, y_n+1) - D_N(x_m+1, y_n+1)|
\]

Case 4: Cand2-Cand2' = (7)

2.3 스테레오 물체 추적 및 영상복원(3단계)

2단계에서 구한 표절 물체의 이동거리를 좌표값과 이동방향은 스테레오 입체카메라 시스템의 펜더블트에 전달되며새 이동물체의 실시간적 추적 및 주 시각 제어가 수행된다. 즉, 그림 4와 같이 (4)의 경우가 최소값을 가질 경우 후보영역 1(Cand1)과 후보영역 2' (Cand2')가 각 프레임에서 실 영역을 결정한다.

따라서, 펜더블트의 제어함을 얻으려고 후보 영역 1(Cand1)과 후보영역 2' (Cand2')의 시작 좌표 및 마지막 좌표값을 각각 계산하게 된다. 그런 후에는, 두 프레임 좌표간의 차이값인 이동 거리를 입력된 영상의 중앙 좌표에서 구함으로써 펜더블트의 제어신호로 변환되며 표절물체를 추적하게 된다. 즉, 이동물체의 입력 영상의 중심에 위치시키고 스테레오 시차를 제어시켜야 한다. 따라서, 스테레오 카메라의 영상은 다시 초기화되며 다음 프레임의 입력신호를 받아들여 위의 1-3 단계 과정을 다시 반복 수행하게 되며, 최종적으로 펜더블트 제어값으로 전달된 시차정보와 좌표값이 수신된 정보를 전송되고, 서버 시스템으로부터 전송되어진 좌표값과 시차정보는 접속된 클라이언트 시스템의 증각상호작성 알고리즘에 따라 영상으로 복원된다. 이 과정의 영상은 생성함으로써 보다 자연스러운 3D 입체영상 생성이 이루어지게 된다.
그림 5. 좌우 영상을구하기 위한 중간영상의 대응점

그림 5는 본 논문에서 제안한 3D 스테레오 패널 시스템을 구현하기 위해 이용된 중간영상화상의 개념을 나타낸 것이다. 그림 5에서 I축은 중간 영상 화상 개념에서의 선택된 수치 위치를 보여주고 있으며, 중간영상 'I'의 변을 통해서 좌우영상

L'에서 우영상으로 'R'까지의 대응 위치관계를 보여준 것이다.

또한, 스테레오 입력영상으로부터 중간영상화상을 생성할 때 시작점의 위치는 오, 오크 나타내며, 오는 0과 1사이의 값으로 설정되게 된다.

여기서, 좌 영상액 기준으로 할 때, 오 = 0인 영상은 좌 영상 액, 오 = 1인 영상은 우 영상을 각각 나타내며, 중간값에 해당하는 영역이 중간영상에 해당된다. 식 (8)은 시작점의 위치 오에 따라 가중 평균값으로 대응되는 경우를 나타낸 식이다.

\[I_r(i,j) = (1-\alpha) \cdot I_l(i-d_r(i,j),j) + \alpha \cdot I_l(i-d_r(i,j),j) \]

(8)

식 (8)에서, \(d_r \)는 탐색범위 내의 범위값, \(I_r \)는 좌, 우 영상의 범위가 교차되는 지점에 합성된 중간영상화상의 위치를 각각 나타낸 것이다. 일반적으로, 중간영상화상을 생성할 때 스테레오 영상의 한쪽 영상에는 서로 가려진 영역(occluded region)이 존재하게 된다. 이 때, 이러한 가려진 영역에는 범위가 바뀌지 못한 영역이 존재할 수 있기 때문에 이러한 영역에 대해서는 시차 평활화 과정을 통하여 주변 시차 값들로 평균값을 구하여 그 범위 값으로 대체하게 된다. 식 (9)는 수평방향의 시차와 좌우 영상간의 관계를 나타내는 식이다.

\[I_r = \left[\begin{array}{c} I_r \\ J_r \\ \end{array} \right] = \left[\begin{array}{c} I_l \\ J_l \\ \end{array} \right] + \left[\begin{array}{c} \Delta I_l \\ \Delta J_l \\ \end{array} \right] \]

(9)

따라서 본 논문에서는 스테레오 입력영상의 특성에 따라 적응적 장학 알고리즘을 이용하여 영상을 복원하고 중간점점의 영상을 합성하는 방식을 제안함으로써 기존 방식들의 장점들을 상호보완적으로 사용하여 성능을 개선하였으며, 이를 이용하여 3차원 통신시스템에서의 데이터 압축과 다시점 3D 디스플레이 시스템을 구현을 통해 보다 자연스러운 디스플레이가 가능한 스테레오 비전 시스템을 제시하였다.

III. 실험 및 결과분석

본 실험에서는 그림 6과 같이 스테레오 카메라의 패널 시스템 구성을 위해 패널에 WSR 한을 로

보틱스의 HWR-PT1를 사용하였고, 스테레오 영상 입력용 CCD 카메라로는 WSR 동경전차 TELL의 CS-

8239B를 사용하였다. 스테레오 영상의 처리 및 저장을 위해 IBM PC 및 Matrox사의 Metero II와 Metro II MC/4를 프레임 그레이버(frame grabber)로 사용하였다. 즉, 연속적으로 입력되는 스테레오 영상으로부터 적응적 시차추정방식을 이용하여 시차 벡터를 검출하고, 각각의 시차 벡터들의 움직임 추정을 통해 ADMV를 검출한 다음 후보영상을 찾아낸다. 그리고 후보영역으로부터 표적체제가 있는 실 영역을 찾아내하여 페이프를 추출하게 된다. 특별한 표면부에서 물체의 이동거리 및 이동방향을 구해 최종적으로 주사각 및 패널의 위치가 이루어지게 된다.

![그림 6. 실험의 개념도 및 패널 시스템](image-url)

그림 7은 본 논문에서 사용한 스테레오 실험 영상과 이를 통해 추정된 시차 지도를 나타낸 것으로, 그림 7의 (a)는 1번째 프레임의 좌, 우 입력 영상을, (b)는 2번째 프레임의 좌, 우 입력 영상을 각각 나타낸 것이다. 또한, (c)와 (d)는 1번째 프레임과 2번째 프레임의 스테레오 영상간에 시차 추정을 통하여 얻어진 시차 지도를 각각 나타낸 것으로, 여기에서 사용된 입력 영상으로는 256×256 영상 2 프레임을 실험에 사용하였으며, 시차 추정에 사용된 블록 크기는 4×4로, 시차 벡터의 탐색구간 ±30도 적
논문/시차 옵티즘 베타에 기반한 스테레오 물체추적 및 다시점 영상복원 시스템

표 1. 후보영역의 좌표 검출 결과

<table>
<thead>
<tr>
<th>좌표</th>
<th>영역</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cand1</td>
</tr>
<tr>
<td>시작점(x, y)</td>
<td>(61, 125)</td>
</tr>
<tr>
<td>끝점(x, y)</td>
<td>(80, 141)</td>
</tr>
<tr>
<td>중앙점(x, y)</td>
<td>(71, 133)</td>
</tr>
</tbody>
</table>

표 2. 4가지 경우에 대한 비용함수 추정 결과

<table>
<thead>
<tr>
<th>결과</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>비용함수의 결과값</td>
<td>512</td>
<td>280</td>
<td>64</td>
<td>568</td>
</tr>
</tbody>
</table>

거의 영상 사이에서는 거의 같기 때문에 비용함수의 추정에 대한 결과가 상당히 정확한 추정이 이루어진다면 실제 물체의 두 영역은 다른 후보 영역들에 비해 최소값을 가져가게 된다. 따라서, 표 2에 나타난 결과와 같이 후보 영역간의 비용함수의 추정 결과가 가장 적절한 경우는 Case 3가 되고, 이 경우에 해당되는 두 영역이 Cand1과 Cand2를 실제 물체 영역으로 판단하게 된다. 따라서, 후보 영역의 중앙값 차이가 4인 경우는 오른쪽과 위쪽으로 그리고, -1인 경우는 왼쪽과 아래쪽으로 이동하도록 하여 여기의 경우 Cand1'과 Cand2의 차이값 (-57, 4)이므로, 왼쪽으로 57 pixel만큼, 위쪽으로 4 pixel 만큼의 감소적으로 패턴트가 세워진다.

그림 8은 패턴트의 제어로 이동 물체가 추적된 후의 스테레오 영상의 영상을 보여준 것이다. 즉, 그림 8의 (a)는 그림 7의 (a)와 (c)의 1번과 2번의 스테레오 영상에 본 논문에서 제안한 ADMV 기법의 추적 알고리즘을 적용하여 입려로부터 2번 패턴의 추적 후의 스테레오 영상을 보여준 영상을 나타낸 것이며, 그림 8의 (b)는 추적후의 스테레오 영상간의 합성된 영상을 보여준 것이다.

 먼저, 그림 8의 (a) 결과를 그림 7의 (a)와 비교해 보면 추적 전에는 물체의 이동으로 물체가 입력 영상의 중심에서 이동되어 있었으나 추적 후에는 재현 영상의 중심으로 이동한 것을 알 수 있다. 이는 제안된 기법을 통해 효과적으로 패턴트가 세워져 스테레오 물체추적이 이루어지고 있다는 것을 의미하며, 그림 8의 (b)에서 보면 중앙의 표적 물체는 하나로 보이고 기타 주변 물체는 각, 우 영상이 겹쳐서 보임을 알 수 있으며, 이를 통해 제안된 기법에 의해 스테레오 카메라의 주시각이 재생되어 표적물체의 스테레오 시차가 효과적으로 세워졌음을

171
그림 8. 추적 후의 스테레오 영상 및 합성 영상

을 알 수 있다.

표 3은 실제 물체의 이동 거리와 예측된 방향을 이용한 실험을 통해 얻어진 물체의 이동 거리를 비교한 것으로, 이동 거리의 오차가 단지 0~2 퍼센트 정도로 작을음을 확인할 수 있었다.

표 4는 물체의 추적 오차율을 나타낸 것이다. 즉, 실제 물체 이동치와 추적 실험 결과치간의 절대치 차이를 실제 물체의 이동치로 나누어 준 값으로 추적 결과 평균 오차율은 약 3.05 %로 나타났다.

표 3. 표적 물체의 이동 거리 값

<table>
<thead>
<tr>
<th>추적 프레임</th>
<th>실제 측정 결과</th>
<th>실제 측정 결과</th>
<th>실험 결과</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>상대 이동거리</td>
<td>상대 이동거리</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(0, 0)</td>
<td>(0, 0)</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>2</td>
<td>(62, -6)</td>
<td>(62, 6)</td>
<td>(64, -6)</td>
</tr>
<tr>
<td>3</td>
<td>(63, -2)</td>
<td>(125, 10)</td>
<td>(61, -1)</td>
</tr>
<tr>
<td>4</td>
<td>(70, 3)</td>
<td>(195, 15)</td>
<td>(71, 2)</td>
</tr>
<tr>
<td>5</td>
<td>(65, 8)</td>
<td>(260, 20)</td>
<td>(63, 7)</td>
</tr>
</tbody>
</table>

표 4. 표적 물체의 추적 예측율

<table>
<thead>
<tr>
<th>오차 (정확정)</th>
<th>프레임 2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>오차율 (%)</td>
<td>3.21</td>
<td>3.55</td>
<td>2.02</td>
<td>3.41</td>
</tr>
<tr>
<td>평균 오차율 (%)</td>
<td></td>
<td></td>
<td></td>
<td>3.05</td>
</tr>
</tbody>
</table>

그림 9. 진동된 영상으로 복원된 5th 프레임의 중간시점 영상

그림 9는 식 (8)과 (9)을 이용하여 수신단에서
복원된 영상을 나타낸 것으로, 전체 30 frame의 일
력 영상 중 5th 프레임의 영상에 대해 원본 좌 영
상과 적응적 시각추정 방법에 의해 생성된 중간시
점의 영상들 중 5번째 시점(N=5)과 10번째 시점
(N=10)의 중간영상과 복원된 우 영상을 각각 나타
낸 것이다. 그림 9에서 영상의 표적물체의 자동차
의 보이는 시점이 각 영상마다 조금씩 다르며 시각적
적으로도 별다른 오직 없이 성공적으로 합성되었는
음을 알 수 있다.

표 5는 그림 9에서 나타난 시각적 결과를 검증
하기 위해 원 영상과 복원된 영상간의 유사도 측정
을 위한 PSNR의 결과를 나타낸 것이다. 표 5에서
보면, 전체 30 frame의 평균 PSNR이 37.9 dB로 각
각 측정되었으며, 더욱이 배경 물체가 존재하고 있
음에도 불구하고 특별한 오류 없이 강한하게 동작
하고 있음을 알 수 있었다.
표 5. 원본 영상과 복원된 영상간의 PSNR 결과 비교

<table>
<thead>
<tr>
<th>Frame</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd frame</td>
<td>36.36 dB</td>
</tr>
<tr>
<td>3th frame</td>
<td>37.90 dB</td>
</tr>
<tr>
<td>4th frame</td>
<td>38.13 dB</td>
</tr>
<tr>
<td>5th frame</td>
<td>35.23 dB</td>
</tr>
<tr>
<td>Total average</td>
<td>36.91 dB</td>
</tr>
</tbody>
</table>

따라서, 본 논문에서 제안된 시스템의 목적이 물체추적을 통한 원격 화상 통신 시스템임을 간ناس할 때, 측정된 PSNR이 30dB-38dB의 PSNR 이면 원격 화상시스템의 용용에 충분한 결과 값으로 분석된다.

V. 결론

본 논문에서는 적용적 시차 움직임 벡터에 기반한 새로운 스테레오 물체 추적 시스템을 제안하였다. 즉, 제안된 방법에서는 순차적인 적용적 시차 움직임 벡터를 사용하여 이동 물체의 영역과 그것의 위치와의 효과적으로 검출할 수 있었다. 그리고 이를 위치정보를 이용하여 패밀리를 제어하여 추적적으로 표시 물체의 추적이 가능하였다. 256x256 픽셀크기의 스테레오 영상 7 프레임을 사용한 물체추적 실험 결과, 표시 물체의 실제위치와 실험을 통해 얻은 이동 위치와의 평균 에러율이 약 3.05%로 낮게 나타났으며 본 논문에서 제안한 ADMV기반의 스테레오 물체 추적 시스템이 적용적으로 동작이고 있음을 확인할 수 있었다. 또한, 제안된 방법은 스테레오 입력영상 시퀀스로부터 추출된 적용적 시차 움직임 벡터가 스테레오 물체 추적 뿐만 아니라 영상복원을 통해 3D 디스플레이에서도 사용될 수 있기 때문에 기존의 스테레오 물체 추적 알고리즘의 간소화와 더불어 실시간 스테레오 물체 추적 및 3D 원격 화상통신 시스템의 구현 가능성을 보였다.

참고문헌

tracking system", Optics Communications, vol.200, pp.73-85, 2001

고 정환 (Jung-Hwan Ko) 정회원
1999년 2월 광운대학교 제어계측공학과 학사
2001년 8월 광운대학교 전자공학과 석사
2005년 2월 광운대학교 전자공학과 박사
2005년 3월~현재 광운대학교 차세대 3D 디스플레이 연구센터 책임 연구원
<관심분야> 3D 로봇비전, 스테레오 카메라, 영상 통신

김 은수 (Eun-Soo Kim) 종신회원
광운대학교 차세대 3D 디스플레이 연구센터 (http://3DRC.org)
한국통신학회지 Vol.29, No. 4c 참조