DOI QR코드

DOI QR Code

AUTOMORPHISMS OF A WEYL-TYPE ALGEBRA I

Choi, Seul-Hee

  • Published : 2006.01.01

Abstract

Every non-associative algebra L corresponds to its symmetric semi-Lie algebra $L_{[,]}$ with respect to its commutator. It is an interesting problem whether the equality $Aut{non}(L)=Aut_{semi-Lie}(L)$ holds or not [2], [13]. We find the non-associative algebra automorphism groups $Aut_{non}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ and $Aut_{non-Lie}\; \frac\;{(WN_{0,0,1}_{[0,1,r_1...,r_p])}$ where every automorphism of the automorphism groups is the composition of elementary maps [3], [4], [7], [8], [9], [10], [11]. The results of the paper show that the F-algebra automorphism groups of a polynomial ring and its Laurent extension make easy to find the automorphism groups of the algebras in the paper.┌ᘀ؀䡏䡈䉚ᔀ胭閜鳬鶘駭验耀

Keywords

simple;non-associative algebra;semi-Lie algebra;automorphism;locally identity;annihilator;Jacobian conjecture;self-centralizing

References

  1. M. H. Ahmadi, K. -B. Nam, and J. Pakinathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, (March) 2005, 113-120 https://doi.org/10.1142/S1005386705000106
  2. A. A. Albert, Power-Associative Rings, Trans. Amer. Math. Soc. 64, 552-593 (1948) https://doi.org/10.2307/1990399
  3. S. H. Choi and K. -B. Nam, The Derivation of a Restricted Weyl Type Non- Associative Algebra, Hadronic Journal 28 (2005), no. 3, 287-295
  4. S. H. Choi and K. -B. Nam, Derivations of a restricted Weyl Type Algebra I, Accepted, Rocky Mountain Journal of Mathematics, 2005
  5. V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom. 38 (1974), 832-834
  6. N. Kawamoto, A. Mitsukawa, K. -B. Nam, and M. -O. Wang, The automor- phisms of generalized Witt type Lie algebras, Journal of Lie Theory, 13 Vol(2), Heldermann Verlag, 2003, 571-576
  7. K. -B. Nam, On Some Non-Associative Algebras Using Additive Groups, Southeast Asian Bulletin of Mathematics, Vol. 27, Springer Verlag, 2003, 493-500
  8. K. -B. Nam and S. H. Choi, On Evaluation Algebras, SEAMS Bull Mathematics 29 (2005), no. 2, 381-385
  9. K. -B. Nam and S. H. Choi, On the Derivations of Non-Associative Weyl-type Algebras, Appear, Southeast Asian Bull. Math., 2005
  10. K. -B. Nam, Y. Kim and M. -O. Wang, Weyl-type Non-Associative Algebras I, IMCC Proceedings, 2004, SAS Publishers, 147-155
  11. K. -B. Nam and M. -O. Wang, Notes on Some Non-Associative Algebras, Journal of Applied Algebra and Discrete Structured, Vol 1, No. 3, 159-164
  12. A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija 3 (1969), 707-722 https://doi.org/10.1070/IM1969v003n04ABEH000798
  13. R. D. Schafer, Introduction to nonassociative algebras, Dover, 1995, 128-138
  14. R. M. Santilli, An introduction to Lie-admissible algebras, Nuovo Cimento Suppl. 6 (1968), no. 1, 1225-1249 https://doi.org/10.1007/BF02747405