DOI QR코드

DOI QR Code

COMMON FIXED POINTS OF COMPATIBLE MAPS OF TYPE (β) ON FUZZY METRIC SPACES

KUTUKCU SERVET;TURKOGLU DURAN;YILDIZ CEMIL

  • Published : 2006.01.01

Abstract

In this paper we prove a common fixed point theorem for compatible maps of type $(\beta)$ on fuzzy metric spaces with arbitrary continuous t-norm.

Keywords

fuzzy metric spaces;common fixed point

References

  1. S. Banach, Theorie les operations lineaires, Manograie Mathematyezne, Warsaw, Poland, 1932
  2. Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy Math. 4 (1997), 949-962
  3. Y. J. Cho, H. K. Pathak, S. M. Kang, and J. S. Jung, Common fixed points of compatible maps of type (${\beta}$) on fuzzy metric spaces, Fuzzy Sets and Systems 93 (1998), 99-111 https://doi.org/10.1016/S0165-0114(96)00200-X
  4. M. Edelstein, On fixed and periodic points under contraction mappings, J. London Math. Soc. 37 (1962) 74-79 https://doi.org/10.1112/jlms/s1-37.1.74
  5. M. Grabiec, Fixed points in fuzzy metric space, Fuzzy Sets and Systems 27 (1988), 385-389 https://doi.org/10.1016/0165-0114(88)90064-4
  6. O. Hadzic and E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Acad. Publ., 2001
  7. O. Hadzic and E. Pap, A fixed point theorem for multivalued mappins in probabilistic metric spaces and an application in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 333-344 https://doi.org/10.1016/S0165-0114(01)00144-0
  8. I. Istratescu, A fixed point theorem for mappings with a probabilistic contractive iterate, Rev. Roumaire. Math. Pure Appl. 26 (1981), 431-435
  9. O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984), 215-229 https://doi.org/10.1016/0165-0114(84)90069-1
  10. E. P. Klement, R. Mesiar, and E. Pap, Triangular norms. Position paper I: Basic analytical and algebraic properties, Fuzzy Sets and Systems 143 (2004), 5-16 https://doi.org/10.1016/j.fss.2003.06.007
  11. O. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika (Praha) 11 (1975), 326-334
  12. H. K. Pathak, Y. J. Cho, S. S. Chang, and S. M. Kang, Compatible mappings of type (P), Rev. Res. Univ. Novi Sad., to appear
  13. B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290 https://doi.org/10.2307/1997954
  14. S. Sharma, Common Fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 345-352 https://doi.org/10.1016/S0165-0114(01)00112-9
  15. S. L. Singh and S. Kasahara, On some recent results on common fixed points, Indian J. Pure Appl. Math. 13 (1982), 757-761
  16. S. L. Singh and B. Ram, Common fixed points of commuting mappings in 2- metric spaces, Math. Sem. Notes Kobe Univ. 10 (1982), 197-208
  17. L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
  18. A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399 https://doi.org/10.1016/0165-0114(94)90162-7
  19. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci. 9 (1986), 771-779 https://doi.org/10.1155/S0161171286000935
  20. G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), 261-263 https://doi.org/10.2307/2318216
  21. S. N. Mishra, N. Sharma, and S. L. Singh, Common fixed points of maps on fuzzy metric spaces, Internat. J. Math. Sci. 17 (1994), 253-258 https://doi.org/10.1155/S0161171294000372
  22. Z. K. Deng, Fuzzy pseduo-metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95 https://doi.org/10.1016/0022-247X(82)90255-4
  23. M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230 https://doi.org/10.1016/0022-247X(79)90189-6
  24. V. M. Sehgal and A. T. Bharucha-Reid, Fixed point of contraction mapping on PM spaces, Math. Systems Theory 6 (1972), 97-100 https://doi.org/10.1007/BF01706080
  25. J. X. Fang, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems 46 (1992), 107-113 https://doi.org/10.1016/0165-0114(92)90271-5
  26. E. P. Klement, R. Mesiar, and E. Pap, Problems on triangular norms and related operators, Fuzzy Sets and Systems 145 (2004), 471-479 https://doi.org/10.1016/S0165-0114(03)00303-8
  27. S. Sessa, On weak commutativity condition of mappings in fixed point consider- ations, Publ. Inst. Math. Beagrad 32 (46) (1982), 149-153
  28. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313-334 https://doi.org/10.2140/pjm.1960.10.313

Cited by

  1. Common Fixed Point Theorems for Weakly Compatible Mappings in Fuzzy Metric Spaces Using (JCLR) Property vol.03, pp.09, 2012, https://doi.org/10.4236/am.2012.39145
  2. On Fixed Point Theorem of Weak Compatible Maps of Type(γ) in Complete Intuitionistic Fuzzy Metric Space vol.11, pp.1, 2011, https://doi.org/10.5391/IJFIS.2011.11.1.038