DOI QR코드

DOI QR Code

THE ALMOST SURE CONVERGENCE OF AANA SEQUENCES IN DOUBLE ARRAYS

  • Published : 2006.02.01

Abstract

For double arrays of constants ${a_{ni},\;1{\leq}i{\leq}k_n,\;n{\geq}1}$ and sequences ${X_n,\;n{\geq}1}$ of asymptotically almost negatively associated (AANA) random variables the almost sure convergence of $\sum\limits{_{i=1}}{^{k_n}}\;a_{ni}X_i$ is derived.

Keywords

almost sure convergence;double arrays;asymptotically almost negatively associated;weighted sums

References

  1. R. C. Bradley, W. Bryc, and S. Janson, On dominations between measures of dependence, J. Multivariate Anal. 23 (1987), no. 2, 312-329 https://doi.org/10.1016/0047-259X(87)90160-6
  2. T. K. Chandra and S. Ghosal, Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables, Acta Math. Hungar. 71 (1996), no. 4, 327-336 https://doi.org/10.1007/BF00114421
  3. K. Joag-Dev and F. Proschan, Negative association of random variables, with application, Ann. Statist. 11 (1983), no. 1, 286-295 https://doi.org/10.1214/aos/1176346079
  4. T. S. Kim and M. H. Ko, On the strong law for asymptotically almost negatively associated random variables, Rocky Mountain J. Math. 34 (2004), no. 3, 979-989 https://doi.org/10.1216/rmjm/1181069838
  5. P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), no. 3, 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
  6. T. K. Chandra and S. Ghosal, The strong law of large numbers for weighted averages under dependence assumptions, J. Theoret. Probab. 9 (1996), no. 3, 797-809 https://doi.org/10.1007/BF02214087
  7. B. D. Choi and S. H. Sung, Almost sure convergence theorem of weighted sums of random variables, Stochastic Anal. Appl. 5 (1987), no. 4, 365-377 https://doi.org/10.1080/07362998708809124