Identification of Three Extracellular Proteases from Bacillus subtilis KCTC 3014

  • Choi Nack-Shick (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Department of Microbiology, Chungnam National University) ;
  • Chung Dong-Min (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Department of Microbiology, Chungnam National University) ;
  • Ryu Chung-Hun (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon Kab-Seog (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Maeng Pil-Jae (Department of Microbiology, Chungnam National University) ;
  • Kim Seung-Ho (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2006.03.01

Abstract

Three extracellular proteases (Vpr, peptidase T, and subtilisin) were identified from the culture supernatant of Bacillus subtilis KCTC 3014. All the proteins were partially purified as a mature form by using a DEAE-cellulose ion-exchange column chromatography. Their activities were determined by using zymography and densitometry. The relative molecular masses of Vpr and peptidase T (PepT) were determined to be 68 and 48 kDa by SDS-PAGE and zymography, respectively. However, subtilisin formed a 'binding mode' at the top of the separating gel. After denaturation by boiling at $100^{\circ}C$ for 5 min, its molecular mass was determined to be 29 kDa, whereas its activity was lost. The optimal pH of Vpr, PepT, and subtilisin were 9.0, 6.0-7.0, and 7.0-8.0, respectively. The optimal temperature of Vpr, PepT, and subtilisin was 40, 50, and $40^{\circ}C$, respectively. Inhibitor test revealed that Vpr and subtilisin were serine proteases and that PepT was a metalloprotease. Interestingly, we found that Vpr showed no enzyme activity on a 2DE zymogram gel. Three genes, vpr, pepT, and apr (encoding subtilisin protein), were cloned and their nucleotide and deduced amino acid sequences were determined.

References

  1. Astrup, T. and S. Müllertz. 1952. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40: 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  2. Bruckner, R., O. Shoseyov, and R. H. Doi. 1990. Multiple active forms of a novel serine protease from Bacillus subtilis. Mol. Gen. Genet. 221: 486-490
  3. Choi, N. S., K. H. Yoo, J. H. Hahm, K. S. Yoon, K. T. Chang, B. H. Hyun, P. J. Maeng, and S. H. Kim. 2005. Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: Produced by Bacillus sp. DJ-2 from Doen-Jang. J. Microbiol. Biotechnol. 15: 72-79
  4. Choi, N. S., K. H. Yoo, K. S. Yoon, K. T. Chang, P. J. Maeng, and S. H. Kim. 2005. Identification of recombinant subtilisins. J. Microbiol. Biotechnol. 15: 35-39
  5. Choi, N. S., K. T. Chang, P. J. Maeng, and S. H. Kim. 2004. Cloning, expression, and fibrin (ogen)olytic properties of a subtilisin DJ-4 gene from Bacillus sp. DJ-4. FEMS Microbiol. Lett. 236: 325-331 https://doi.org/10.1111/j.1574-6968.2004.tb09665.x
  6. Choi, N. S. and S. H. Kim. 2000. Two fibrin zymography methods for analysis of plasminogen activators on gels. Anal. Biochem. 281: 236-238 https://doi.org/10.1006/abio.2000.4572
  7. Choi, N. S. and S. H. Kim. 2001. The effect of sodium chloride on the serine-type fibrinolytic enzymes and the thermostability of extracellular protease from Bacillus amyloliquefaciens DJ-4. J. Biochem. Mol. Biol. 34: 134-138
  8. Choi, N. S., S. K. Ju, T. Y. Lee, K. S. Yoon, K. T. Chang, P. J. Maeng, and S. H. Kim. 2005. Miniscale identification and characterization of subtilisins from Bacillus sp. strains. J. Microbiol. Biotechnol. 15: 537-543
  9. Gharahdaghi, F., C. R. Weinberg, D. A. Meagher, B. S. Imai, and S. M. Mische. 1999. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis 20: 601-605 https://doi.org/10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
  10. Gharahdaghi, F., M. Kirchner, J. Fernandez, and S. M. Mische. 1996. Peptide-mass profiles of polyvinylidene difluoride-bound proteins by matrix-assisted laser desorption/ionization timeof- flight mass spectrometry in the presence of nonionic detergents. Anal. Biochem. 233: 94-99 https://doi.org/10.1006/abio.1996.0012
  11. Hirose, I., K. Sano, I. Shioda, M. Kumano, K. Nakamura, and K. Yamane. 2000. Proteome analysis of Bacillus subtilis extracellular proteins: A two-dimensional protein electrophoretic study. Microbiology 146: 65-75 https://doi.org/10.1099/00221287-146-1-65
  12. Kawamura, F. and R. H. Doi. 1984. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J. Bacteriol. 160: 442-444
  13. Kho, C. W., S. G. Park, S. Cho, D. H. Lee, P. K. Myung, and B. C. Park. 2005. Confirmation of Vpr as a fibrinolytic enzyme present in extracellular proteins of Bacillus subtilis. Protein Expres. Purif. 39: 1-7 https://doi.org/10.1016/j.pep.2004.08.008
  14. Kim, S. H. and N. S. Choi. 1999. Electrophoretic analysis of protease inhibitors in fibrin zymography. Anal. Biochem. 270: 179-181 https://doi.org/10.1006/abio.1999.4080
  15. Kim, S. H., N. S. Choi, and W. Y. Lee. 1998. Fibrin zymography: A direct analysis of fibrinolytic enzymes on gels. Anal. Biochem. 263: 115-116 https://doi.org/10.1006/abio.1998.2816
  16. Kleiner, D. E. and W. G. Stetler-Stevenson. 1994. Quantitative zymography: Detection of picogram quantities of gelatinases. Anal. Biochem. 218: 325-329 https://doi.org/10.1006/abio.1994.1186
  17. Kunst, F., N. Ogasawara, I. Moszer, and 148 other authors. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249-256 https://doi.org/10.1038/36786
  18. Margot, P. and D. Karamata. 1996. The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology 142: 3437-3444 https://doi.org/10.1099/13500872-142-12-3437
  19. Matsudaira, P. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membrane. J. Biol. Chem. 262: 10035-10038
  20. Park, S. G., C. W. Kho, S. Cho, D. H. Lee, S. H. Kim, and B. C. Park. 2002. A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics 2: 206-211 https://doi.org/10.1002/1615-9861(200202)2:2<206::AID-PROT206>3.0.CO;2-5
  21. Priest, F. G. 1977. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 41: 711-753
  22. Roitsch, C. A. and J. H. Hageman. 1983. Bacillopeptidase F: Two forms of a glycoprotein serine protease from Bacillus subtilis 168. J. Bacteriol. 155: 145-152
  23. Rufo, G. A., B. J. Sullivan, A. Sloma, and J. Pero. 1990. Isolation and characterization of a novel extracellular metalloprotease from Bacillus subtilis. J. Bacteriol. 172: 1019-1023 https://doi.org/10.1128/jb.172.2.1019-1023.1990
  24. Sloma, A., A. Ally, D. Ally, and J. Pero. 1988. Gene encoding a minor extracellular protease in Bacillus subtilis. J. Bacteriol. 170: 5557-5563 https://doi.org/10.1128/jb.170.12.5557-5563.1988
  25. Sloma, A., Jr., G. A. Rufo, K. A. Theriault, M. Dwyer, S. W. Wilson, and J. Pero. 1991. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J. Bacteriol. 173: 6889-6895 https://doi.org/10.1128/jb.173.21.6889-6895.1991
  26. Stahl, M. L. and E. Ferrai. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol. 158: 411-418
  27. Tran, L., X. C. Wu, and S. L. Wong. 1991. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J. Bacteriol. 173: 6364-6372 https://doi.org/10.1128/jb.173.20.6364-6372.1991
  28. Uehara, H., K. Yamane, and B. Mauro. 1979. Thermosensitive, extracellular neutral proteases in Bacillus subtilis: Isolation, characterization, and genetics. J. Bacteriol. 139: 583-590
  29. Yang, M. Y., E. Ferrari, and D. J. Henner. 1984. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15-21