Flame Retardant Properties of Polyurethane by the Addition of Phosphorus Compounds

인계 화합물의 첨가에 의한 폴리우레탄의 난연성

  • 정영진 (국립강원대학교 삼척캠퍼스 소방방재학부)
  • Published : 2006.12.31

Abstract

Polyurethane(PU) was mixtured by the treatment with flame retardants such as Tri(chloroisopropyl) phosphate(TCPP), Triethyl phosphate(TEP) and Trimethyl phosphate(TMP) at about $90^{\circ}C$. Rigid polyurethane foam was produced using the mixured products as flame retardants. The mechanical property and flammability of rigid polyurethane was investigated. The mixtured polyurethane shows reduced flammability over virgin polyurethane. Mechanical strength of mixtured polyurethane also shows as high as that of virgin polyurethane. In order to evaluate flame retardant properties of the mixtured polyurethane foams, heat release rate(HRR) of the foam was measured by cone calorimeter. Scanning electron micrograph of mixtured PU shows uniform cell morphology as virgin PU.

References

  1. G. Pal and H. Macskasy, 'Plastics Their Behavior in Fires', Elsevier, Amsterdam(1991)
  2. G. L. Nelsion, 'Fire and Polymers', American Chemical Society, Washington, DC.(1990)
  3. M. Lewis, S. M. Altas, and E. M. Pearce, 'Flame-Retardant Polymer Materials', Plenum Press, New York(1975)
  4. M. L. Hardy, 'Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPOand HBCD', Polym. Degrad. Stab., Vol. 64, pp.545-555(1999) https://doi.org/10.1016/S0141-3910(98)00141-4
  5. Y. Tanaka, 'Epoxy Resin Chemistry and Technology', Marcel Dekker, New York(1988)
  6. 폴리우레탄 - 다양한 응용과 적용', 한국바스프(주) (1995)
  7. A. Fina, H. C. L. Abbenhuis, D. Tabuani, and G. Camino, 'Metal Functionalized POSS as Fire Retardants in Polypropylene', Polymer Degradation and Stability, Vol. 91, pp.2275-2288(2006) https://doi.org/10.1016/j.polymdegradstab.2006.04.014
  8. A. P. Mouritz, Z. Mathys, and A. G. Gibson, 'Heat Release of Polymer Composites in Fire', Composites Part A: Applied Science and Manufacturing, Vol. 37, pp.1040-1054(2006) https://doi.org/10.1016/j.compositesa.2005.01.030
  9. Y.-K. Kong and D.-H. Lee, 'A Study on Ignitability and Heat Realease Rate Characteristics of Rigid Polyurethane Foam', T. of Korean Institute of Fire Sci. & Eng. Vol. 17, No. 4, pp.117-123(2003)
  10. G. Gallina, E. Bravin, C. Badalucco, G. Audisio, M. Armanini, and A. De Chirico, 'Application of Cone Calorimeter for the Assessment of Class of Flame Retardant for Polypropylene', Fire and Materials, Vol. 2, pp.15-18(1998)
  11. U. Sorathia, G. Long, T. Gracik, M. Blum, and J. Ness, 'Screening Tests for Fire Safty of Composites for Marine Applications', Fire and Materials, Vol.25, pp.215-222(2001) https://doi.org/10.1002/fam.771
  12. Y. Tang, Y. Hu, L. Song, R. Zong, Z. Gui, and W. Fan, 'Preparation and Combustion Properties of Flame Retarded Polypropylene-polyamide-6 Alloys', Polymer Degradation and Stability, Vol. 91, pp.234-241(2006) https://doi.org/10.1016/j.polymdegradstab.2005.05.016
  13. S. Girud, S. Bourbigot, M. Rochery, I. Vroman, L. Tighzert, R. Deobel, and F. Poutch, 'Flame Retarded Polyurea with Microencapsulated Ammonium Phosphate for Textile Coating', Polymer Degradation and Stability, Vol. 88, pp.106-113(2005) https://doi.org/10.1016/j.polymdegradstab.2004.01.028
  14. ASTM D 1622, Standard Test Method for Apparent Density of Rigid Cellular Plastics, ASTM, Philadelphia (2003)
  15. ISO 5660-1, Reaction to Fire, Part 1. Rate of Heat Release from Building Products(Cone Calorimeter), Genever(2002)
  16. A. Ravve, 'Principles of Polymer Chemistry', Plenum Press, New York(1995)
  17. R. V. Petrella, 'The Assessment of Full-scale Fire Hazards from Cone Calorimeter Data', Journal of Fire Sciences, Vol. 12, pp.14-43(1994) https://doi.org/10.1177/073490419401200102