Cadmium Toxicity Monitoring Using Stress Related Gene Expressions in Caenorhabditis elegans

  • Roh, Ji-Yeon (Department of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Park, Sun-Young (Department of Environmental Engineering, College of Urban Science, University of Seoul) ;
  • Choi, Jin-Hee (Department of Environmental Engineering, College of Urban Science, University of Seoul)
  • Published : 2006.03.31

Abstract

The toxicity of cadmium on Caenorhabditis elegans was investigated to identify sensitive biomarkers for environmental monitoring and risk assessment. Stress-related gene expression were estimated as toxic endpoints Cadmium exposure led to an increase in the expression of most of the genes tested. The degree of increase was more significant in heat shock protein-16.1, metallothionein-2, cytochrome p450 family protein 35A2, glutathione S-transferase-4, superoxide dismutase-1, catalase-2, C. elegans p53-like protein-1, and apoptosis enhancer-1 than in other genes. The overall results indicate that the stress-related gene expressions of C. elegans have considerable potential as sensitive biomarkers for cadmium toxicity monitoring and risk assessment.

Keywords

References

  1. Peredney, C.L. & Williams, P.L. Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch Environ Contam Toxicol. 39, 113-118 (2000)
  2. Willams, P.L. et al. Caenorhabditis elegans as an alternative animal species. J Toxicol Environ Health A. 61, 641-647 (2000) https://doi.org/10.1080/00984100050195125
  3. Boyd, W.A. & Williams, P.L. Availability of metals to the nematode Caenorhabditis elegans: toxicity based on total concentrations in soil and extracted fractions. Environ Toxicol Chem. 22, 1100-1106 (2003) https://doi.org/10.1897/1551-5028(2003)022<1100:AOMTTN>2.0.CO;2
  4. Menzel, R., Rodel, M., Kulas, J. & Steinberg, C.E. CYP35: xenobiotically induced gene expression in the nematode Caenorhabditis elegans. Arch Biochem Biophys. 438, 93-102 (2005) https://doi.org/10.1016/j.abb.2005.03.020
  5. Reichert, K. & Menzel, R. Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere 61, 229-237 (2005) https://doi.org/10.1016/j.chemosphere.2005.01.077
  6. Dhawan, R., Dusenbery, D.B. & Williams, P.L. Comparison of lethality, reproduction, and behavior as toxicological endpoints in the nematode Caenorhabditis elegans. J Toxicol Environ Health A. 58, 451-462 (1999) https://doi.org/10.1080/009841099157179
  7. Anderson, G.L., Boyd, W.A. & Williams, P.L. Assessment of sublethal endpoints for toxicity testing with the nematode Caenorhabditis elegans. Environ Toxicol Chem. 20, 833-838 (2001) https://doi.org/10.1897/1551-5028(2001)020<0833:AOSEFT>2.0.CO;2
  8. Boyd, W.A. & Williams, P.L. Comparison of the sensitivity of three nematode species to cooper and their utility in aquatic and soil toxicity tests. Environ Toxicol Chem. 22, 2768-2774 (2003) https://doi.org/10.1897/02-573
  9. Kohra, S. et al. Effect of Bisphenol A on the feeding behavior of Caenorhabditis elegans. J Health Sci. 48, 93-95 (2002) https://doi.org/10.1248/jhs.48.93
  10. Tominaga, N., Kohra, S., Iguchi, T. & Arizono, K. A Multi-Generation sublethal assay of phenols using the nematode Caenorhabditis elegans. J Health Sci. 49, 459-463(2003 ) https://doi.org/10.1248/jhs.49.459
  11. Williams, P.L. & Dusenbery, D.B. Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ Toxicol Chem. 9, 1285-1290 (1990) https://doi.org/10.1897/1552-8618(1990)9[1285:ATTUTN]2.0.CO;2
  12. Cressman, C.P. III & Williams, P.L. Reference toxicants for toxicity testing using Caenorhabditis elegans in aquatic media. In Dwyer, F.J., Doane, T.R., Hinman, T.R., eds, Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment Vol 6. STP 1317. American Society for Testing and Materials, Philadelphia, PA, pp. 518-532 (1997)
  13. Dhawan, R., Dusenbery, D.B. & Williams, P.L. A comparison of metal-induced lethality and behavioral responses in the nematode Caenorhabditis elegans. Environ Toxicol Chem. 19, 3061-3067 (2000) https://doi.org/10.1897/1551-5028(2000)019<3061:ACOMIL>2.0.CO;2
  14. Ura, K. et al. Aquatic acute toxicity testing using the nematode Caenorhabditis elegans. J Health Sci. 48, 583-586 (2002) https://doi.org/10.1248/jhs.48.583
  15. Liao, V.H., Dong, J. & Freedman, J.H. Molecular characterization of a novel, Cadmium-inducible gene from the nematode Caenorhabditis elegans. J Biol Chem. 277, 42049-42059 (2002) https://doi.org/10.1074/jbc.M206740200
  16. Dong, J., Song, M.O. & Freedman, J.H. Identification and characterization of a family of Caenorhabditis elegans genes that is homologous to the cadmiumresponsive gene cdr-1. Biochim Biophys Acta. 1727, 16-26 (2005) https://doi.org/10.1016/j.bbaexp.2004.11.007
  17. Menzel, R., Bogaert, T. & Achazi, R. A systematic gene expression screen of Caenorhabditis elegans Cytochrome P450 genes reveals CYP35 as strongly xenobiotic inducible. Arch Biochem Biophys. 395, 158-168 (2001) https://doi.org/10.1006/abbi.2001.2568
  18. Anderson, G.L., Cole, R.D. & Williams, P.L. Assessing behavioral toxicity with Caenorhabditis elegnas. Environ Toxicol Chem. 23, 1235-1240 (2004) https://doi.org/10.1897/03-264
  19. Roesijadi, G. Metallothionein induction as a measure of response to metal exposure in aquatic animal. Environ Health Perspect 12, 91-95 (1994)
  20. Yoshimi, T. et al. Activation of stress-induced gene by insecticides in the midge, Chironomus yoshimatsui. J Biochem Mol Toxicol. 16, 10-17 (2002)
  21. Kwon, J.Y. et al. Ethanol-response genes and their regulation analyzed by a microarray and comparative genomic approach in the nematode Caenorhabditis elegans. Genomics 83, 600-614 (2004) https://doi.org/10.1016/j.ygeno.2003.10.008
  22. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974)