DOI QR코드

DOI QR Code

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho (School of Civil and Environmental Engineering, Yeungnam University) ;
  • Lee, Jin-Woo (Dohwa Consulting Engineers Co., LTD) ;
  • Kim, Hee-Chul (School of Civil and Environmental Engineering, Yeungnam University) ;
  • Kwon, Soo-Youl (Department of Environmental Health, Korea National Open University)
  • Published : 2006.08.31

Abstract

Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

References

  1. Jetten, M. S. M., Wagner, M., Fuerst, J., van Loosdrecht, M. C. M., Kuenen, G. and Strous, M., 'M icrobiology and application of the anaerobic ammonium oxidation ('ananlmox') process,' Current Opinion in Biotechnol., 12, 283-288 (2001) https://doi.org/10.1016/S0958-1669(00)00211-1
  2. Schmidt, I. and Bock, E., 'Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha,' Arch Microbiol., 167, 106 -111 (1997) https://doi.org/10.1007/s002030050422
  3. Poth, M. and Focht, D., '$^{15}N$ kinetic analysis of $N_2O$ production by Nitrosomonas europaea: an examination of nitrifier denitrification,' Appl. Environ. Microbiol., 49, 1134-1141 (1985)
  4. Batcheler, B. and Lawrence, A., 'Autotrophic denitrification using elemental sulfur,' J WPCF, 50, 1986-2001 (1978)
  5. Fdz-Polanco, F., Fdz-Polanco, M., Fernandez, N., Uruena, M. A., Garcia, P. A. and Villaverde, S., 'New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions,' Water Res., 35, 1111-1114 (2001) https://doi.org/10.1016/S0043-1354(00)00474-7
  6. Van Loosdrecht, M., 'Recent development on biological wastewater nitrogen removal technologies,' In Proceedings of the 2004 International Conference on Wastewater Treatment for Nutrient Removal and Reuse 2004. (lCWNR'04). AIT, Thailand, pp. (2004)
  7. Schmidt, I., Sliekers O., Schmid M., Bock E., Fuerst J., Kuenen J. G., Jetten M.S.M., Strous M., 'New concepts of microbial treatment proesses for the nitrogen removal in wastewater,' FEMS Microbiol. Rev., 27, 481-492 (2003) https://doi.org/10.1016/S0168-6445(03)00039-1
  8. Third, K. A., Slieker, A. O., Kuenen, J. G. and Jetten, M. S. M., 'The CANON system under ammonium limitation: interaction and competition between three groups of bacteria,' Syst. Appl. Microbiol., 24, 588-596 (2002) https://doi.org/10.1078/0723-2020-00077
  9. Philips, S., Wyffels, S., Sprengers, R., and Verstraete, W., 'Oxygen-limited autotrophic nitrification/denitrification by ammonia oxidizers enables upward motion towards more favorable conditions,' Appl. Microbiol. Biotechnol., 59, 557-566 (2002) https://doi.org/10.1007/s00253-002-1059-8
  10. Schmidt, I., Zart, D., and Bock, E., 'Gaseous $NO_2$ as a regulator for ammonium oxidation of Nitrosomonas eutropha,' Antonie van Leeuwenhoek, 79, 311-318 (2001) https://doi.org/10.1023/A:1012038314206
  11. van Dongen, L. G. J. M., Jetten, M. S. M. and van Loosdrecht, 'M. C. M., 'The Combined Sharon/ANAMMOX Process,' STOWA Report, IWA Publishing London (2001)
  12. APHA, WEF and ASCE, 'Standard Methods for the Examination of Water and Wastewater,' 20th ed., Washington DC .( 1998)
  13. Ahn, Y. H. and Speece, R. E. 'Settleability assessment protocol for anaerobic granular sludge and its application,' Water SA, 29, 419-426 (2003)
  14. Frear, D. S. and Burrell, R. C., 'Spectrophotometric method for determining hydroxylamine reductase activity in higher plants,' Anal. Chem., 27, 1664-1665 (1955) https://doi.org/10.1021/ac60106a054
  15. Watt, G. W. and Chrisp, J. D., 'Spectrophotometric method for the determination of hydrazine,' Anal. Chem., 24, 2006-2008 (1952) https://doi.org/10.1021/ac60072a044
  16. Hallin, R. E., and Lindgren, P. E., 'PCR detection of genes encoding nitrite reductase in denitrifying bacteria,' Appl. Environ. Microbiol., 65, 1652-1657 (1999)
  17. Lee, S. Y., Bollinger, J. B., Bezdicek, D. and Ogram, A., 'Estimation of the Abundance of an Unculturable Soil Bacterial strain by a Competitive Quantitative PCR Method' Appl. Environ. Microbiol., 62, 3787-3793 (1996)
  18. Manz, W., Amann, R., Vancanney, M., and Scheifer, K. H., 'Application of a suite of 16S rRNA -specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in natural environment,' Microbiology, 142, 1097-1106 (1996) https://doi.org/10.1099/13500872-142-5-1097
  19. Strous, M., Kuenen, J. G. and Jetten, M. S. M., 'Key physiology of anaerobic ammonia oxidation,' Appl. Environ. Microbiol., 65, 3248-3250 (1999)
  20. Bottcher, B., and Koops, H. P., 'Growth of lith autotrophic ammonia-oxidizing bacteria on hydroxylamine,' FEMS Microbial, Letters, 122, 263-266 (1994) https://doi.org/10.1111/j.1574-6968.1994.tb07178.x
  21. Sliekers, A. O., Derwort, N., Campos Gomez, J. L., Strous, M., Kuenen, J. G., and Jetten, M. S. M., 'Completely autotrophic nitrogen removal over nitrite in one single reactor,' Water Res., 36, 2475-2482 (2002) https://doi.org/10.1016/S0043-1354(01)00476-6
  22. van de Graaf, A. A., de Bruijin, P., Robertson, L. A., Jetten, M. S. M., and Kuenen, J. G., 'Autotrophic growth of anaerobic ammonium -oxidiing microorganisms in a fluidized bed reactor,' Microbiology, 142, 2187-2196 (1996) https://doi.org/10.1099/13500872-142-8-2187
  23. Etchebehere, C., Errazquin, I., Brrandeguy, E., Dabert, P., Moletta, R., and Muxi, L., 'Evaluation of the denitrifying microbiota of anoxic rectors,' FEMS Microbiol. Ecol., 124, 1-7 (2001) https://doi.org/10.1111/j.1574-6968.1994.tb07253.x
  24. Lapara, T. M ., Nakatsu, C. H ., Pantea, L., and Alleman, J. E ., 'Phylogenetic analysis of bacterial communites in mesophillic and thermophilic bioreactors treating pharmaceutical wastewater,' Appl. Environ. Microbiol., 66, 3951-3959 (2000) https://doi.org/10.1128/AEM.66.9.3951-3959.2000
  25. Takami, H., Kobata, K., Nagahama, T., Kobayashi, H., Inoue, A., and Horikoshi, K., 'Biodiversity in deep-sea sites located near the south part of Japan,' Extremopilies, 3, 97-102 (1999) https://doi.org/10.1007/s007920050104
  26. Ahn, Y. -H., Min, K., and Yun, Z., 'Enhancement of reactor performance and pelletization by reactor modification in UASB system.' J. Environ. Sci. Health, A35(9), 1719-1733 (2000)