DOI QR코드

DOI QR Code

POLYCHLORINATED NAPHTHALENE (PCN) AND DIBENZOFURAN (PCDF) CONGENER PATTERNS FROM PHENOL PRECURSORS IN THERMAL PROCESS: [I] A PRIORI HYPOTHESIS OF PCN AND PCDF FORMATION PATHWAYS FROM MONOCHLOROPHENOLS

  • Ryu, Jae-Yong (Environmental Research Team, Daegu-Gyeongbuk Development Institute) ;
  • Kim, Do-Hyong (Environmental Engineering, Georgia Institute of Technology) ;
  • Choi, Kum-Chan (Department of Environmental Engineering, Dong-A University) ;
  • Suh, Jeong-Min (Department of Regional Environmental System Engineering, Pusan National University)
  • Published : 2006.08.31

Abstract

The gas-phase formation of polychlorinated naphthalenes (PCNs) and dibenzofurans (PCDFs) was experimentally investigated by slow combustion of the three chlorophenols (CPs): 2-chlorophenol (2-CP), 3-chlorophenol (3-CP) and 4-chlorophenol (4-CP), in a laminar flow reactor over the range of 550 to $750^{\circ}C$ under oxidative condition. Contrary to the a priori hypothesis, different distributions of PCN isomers were produced from each CP. To explain the distributions of polychlorinated dibenzofuran (PCDF) and PCN congeners, a pathway is proposed that builds on published mechanisms of PCDF formation from chlorinated phenols and naphthalene formation from dihydrofulvalene. This pathway involves phenoxy radical coupling at unsubstituted ortho-carbon sites followed by CO elimination to produce dichloro-9, 10-dihydrofulvalene intermediates. Naphthalene products are formed by loss of H and/or Cl atoms and rearrangement. The degree of chlorination of naphthalene and dibenzofuran products decreased as temperature increased, and, on average, the naphthalene congeners were less chlorinated than the dibenzofuran congeners. PCDF isomers were found to be weakly dependent to temperature, suggesting that phenoxy radical coupling is a low activation energy process. Different PCN isomers, on the other hand, are formed by alternative fusion routes from the same phenoxy radical coupling intermediate. PCN isomer distributions were found to be more temperature sensitive, with selectivity to particular isomers decreasing with increasing temperature.

References

  1. Olie, K., Vermeulen, P. L., and Hutzinger, O., 'Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some incinerators in the Netherlands,' Chem, 6, 455-459 (1977) https://doi.org/10.1016/0045-6535(77)90035-2
  2. Eiceman, G. A., Clement, R.E., and Karasek F. W., 'Analysis of fly ash from municipal incinerators for trace organic compounds,' Analytic. Chem. 51, 2343-2350 (1979) https://doi.org/10.1021/ac50050a013
  3. Hanberg, A., Warn, F., Asplund, L., Haglund, E., and Safe, S., 'Swedish dioxin survey: determination of 2,3,7,8-TCDD toxic equivalent factors for some polychlorinated biphenyls and naphthalenes using biological tests,' Chemosphere, 20, 1161-1164 (1999) https://doi.org/10.1016/0045-6535(90)90238-O
  4. Engwall, M., Brundstrom, B., and Jakobsson, E., 'Ethoxyresorufin O-deethylase (EROD) and aryl hydrocarbon hydroxylase (AHH)-inducing potency and lethality of chlorinated naphthalenes in chicken (Gallus domesticus) and eider duck (Somateria mollissima) embryos,' Archives of Toxicology, 68, 37-42 (1994)
  5. Imagawa, T. and Yamashita, N., 'Isomer specific analysis of polychlorinated naphthalenes in halowax and fly ash,' Organohalogen Compounds, 19, 2]5-218 (1994)
  6. Falandysz, J., 'Polychlorinated naphthalenes: an environmental update,' Environ. Pollut., 101, 77-90 (1998) https://doi.org/10.1016/S0269-7491(98)00023-2
  7. Cypres, R. and Bettens, B., 'La formation de la plupart des composes aromatiques produits lors de la pyrolyse du phenol, ne fait pas intervenir le carbone porteur de la fonction hydroxyle,' Tetrahedron, 39, 359-365 (1975)
  8. Born, J. G. P., Louw, R. and Mulder, P., 'Formation of dibenzodioxins and dibenzofurans in homogeneous gas-phase reactions of phenols,' Chemosphere, 19, 401-406 (1989) https://doi.org/10.1016/0045-6535(89)90342-1
  9. Yang, Y., Mulholland, J. A., and Akki, U., ''Formation of furans by gas-phase reactions of chlorophenols,' Proc. Combust. Inst., 27, 1761-1768 (1998) https://doi.org/10.1016/S0082-0784(98)80017-9
  10. Nakahata, D. -T. and Mulholland, J. A., 'Effects of dichlorophenol substitution pattern on furan and dioxin formation,' Proc. Combust. Inst., 28, 2701-2707 (2000) https://doi.org/10.1016/S0082-0784(00)80690-6
  11. Spielmann, R. and Cramers, C. A., 'Cycleentadienic compounds as intermediates in the thermal degradation of phenols: Kinetics of thermal decomposition of cyclopentadiene,' Chromatographia, 5, 295-300 (1972) https://doi.org/10.1007/BF02310746
  12. Lovell A. B., Brezinsky, K., and Glassman, I., 'Benzene oxidation perturbed by NO2 addition,' Proc. Combust. Inst., 22, 1063-1074 (1988)
  13. Manion, J. and Louw, R., 'Rates, products, and mechanisms in the gas-phase hydrogenolysis of phenol between 922 and 1175 K,' J. Phys. Chem., 93, 3563-3574 (1989) https://doi.org/10.1021/j100346a040
  14. Frank, P., Herzler, J., Just, T. H., and Wahl, C., 'High-temperature reactions of phenyl oxidation,' Proc. Combust. Inst., 25, 833-840 (1994) https://doi.org/10.1016/S0082-0784(06)80717-4
  15. Castaldi, M. J., Marinov, N. M., Melius, C. F., Huang, J., Senken, S. M., Pitz, W. J. and Westbrook, C. K., 'Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame,' Proc. Combust. Inst., 26, 693-702 (1996) https://doi.org/10.1016/S0082-0784(96)80277-3
  16. Marinov, N. M., Castaldi, M. J., Melius, C. F., and Tsang, W., 'Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Premixed Propane Flame,' Combust. Sci. Technol., 128, 295-342 (1997) https://doi.org/10.1080/00102209708935714
  17. Friderichsen, A. V., Shin, E. -J., Evans, R. J., Nimlos, M. R., Dayton, D. C., and Ellison, G. B., 'The pyrolysis of anisole ($C_6H_5OCO_3$) using a hypertherrnal nozzle,' Fuel, 80, 1747-1555 (2001) https://doi.org/10.1016/S0016-2361(01)00059-X
  18. Melius, C. F., Colvin, M. E., Marinov, N. M., Pitz, W. J., and Senkan, S. M., 'Reaction mechanisms in aromatic hydrocarbon formation involving the $C_5H_5$ cyclopentadienyl moiety,' Proc. Combust. Inst., 26, 685-692 (1996) https://doi.org/10.1016/S0082-0784(96)80276-1
  19. Mulholland, J. A., Lu, M.. and Kim, D. H., 'Pyrolytic growth of polycyclic aromatic hydrocarbons by cyclopentadienyl moieties,' Proc. Combust. Inst., 28, 2593-2599 (2000) https://doi.org/10.1016/S0082-0784(00)80677-3
  20. McEnally, C. S. and Pfefferle, L. D., 'The use of carbon-13-labeled fuel dopants for identifying naphthalene formation pathways in non-premixed flames,' Proc. Combust. Inst., 28, 2569-2576 (2000) https://doi.org/10.1016/S0082-0784(00)80674-8
  21. Cieplik, M. K., Epena, O. J., and Louw, R., 'Thermal Hydrogenolysis of Dibenzo-p-dioxin and Dibenzofuran,' Eur. J. Org. Chem., 2792 -2799 (2002)
  22. Abad, E., Caixach, J., and Rivera, J., 'Dioxin like compounds from municipal waste incinerator emissions: assessment of the presence of polychlorinated naphthalenes,' Chemosphere, 38, 109-120 (1999) https://doi.org/10.1016/S0045-6535(98)00177-5
  23. Schneider, M., Stieglitz, L., Will, R., and Zwick, G., 'Formation of polychlorinated naphthalenes on fly ash,' Chemosphere, 37, 2055-2070 (1998) https://doi.org/10.1016/S0045-6535(98)00269-0
  24. Jarnberg, U., Asplund, C., and Jakobsson, E., 'Gas chromatographic retention of polychlorinated naphthalenes on non-polar, polarizable, polar and semectic capillary columns,' J. Chromat. 683A, 385-396 (1994)
  25. Ryu, J. - Y., Mulholland, J. A., Dunn, J. E., Iino, F., and Gullett, B. K., 'Potential role of chlorination pathways in PCDD/F formation in a municipal waste incinerator,' Environ. Sci. Technol., 38, 5112-5119 (2004) https://doi.org/10.1021/es0497227
  26. Olivella, S., Sole, A., and Garcia-Rasa, A., 'Ab intio calculations for the potential surface for the thermal decomposition of the phenoxy radicals,' J. Phys. Chem., 99, 10549-10556 (1995) https://doi.org/10.1021/j100026a018
  27. Liu, R., Morokuma, K., Mebel, A. M., and Lin, M. C., 'Ab inito study of the mechanism for the thernal decomposition of the phenoxy radicals,' J. Phys. Chem., 100, 9314 -9322 (1996) https://doi.org/10.1021/jp953566w
  28. Zhu, L. and Bozzelli, J. B., 'Kinetics and thermochemistry for the gas-phase keto-enol tautomerization of phenol<---> 2,4 - cyclohexadiene,' J. Phys. Chem A., 107, 3696 -3703 (2003) https://doi.org/10.1021/jp0212545
  29. Sawerysyn, J. P., Briois, C., Visez, N., and Baillet, C., 'Dioxins and other products from the gas-phase oxidation of 2-chlorophenol over the range 450-900°C,' Organohalogen Compounds, 66, 1078-1084 (2004)
  30. Evans, C. S. and Dellinger, B., 'Mechanisms of dioxin formation from the high-temperature pyrolysis of 2-bromophenol,' Environ. Sci. Technol, 37, 5574-5580 (2003) https://doi.org/10.1021/es034387s
  31. Evans, C. S. and Dellinger, B., 'Mechanisms of dioxin formation from the high-temperature oxidation of 2-chlorophenol,' Environ. Sci. Technol, 39, 122-127 (2005) https://doi.org/10.1021/es049355z
  32. Mikhailov, I. E., Dushenko, G. A., Kisin, A. V., Mugge, C., Zschunke, A., and Minkin, V. I., '1,5-sigmatropic shifts of chlorine in the cyclopentadiene ring,' Mendeleev Commun., 3, 85-88 (1994)
  33. Okajima, T. and Imafuku, K., 'Theoretical study on chlorine and hydrogen shift in cycloheptatriene and cyclopentadiene derivatives,' J. Org. Chem., 67, 625-632 (2002) https://doi.org/10.1021/jo010084+