INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D. (Institute of Automotive Engineering, Shanghai Jiao Tong University) ;
  • Shen, X. (Institute of Automotive Engineering, Shanghai Jiao Tong University) ;
  • Yu, F. (Institute of Automotive Engineering, Shanghai Jiao Tong University)
  • Published : 2006.12.01

Abstract

In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.

References

  1. Cherouat, H., Lakehal-Ayat, M. and Diop, S. (2004). An integrated braking and steering control for a cornering vehicle. Proc. AVEC'04. 341-346
  2. Fruechte, R. D., Karmel, A. M., Rillings, J. H., Schilke, N. A., Boustany, N. M. and Repa, B. S. (1989). Integrated vehicle control. IEEE 39th Vehicular Technology Conf., 2, 868-877
  3. Furukawa, Y. and Abe, M. (1997). Advanced chassis control systems for vehicle handling and active safety. Vehicle System Dynamics, 28, 59-86 https://doi.org/10.1080/00423119708969350
  4. Harada, M., and Harada, H. (1999). Analysis of lateral stability with integrated control of suspension and steering systems. JSAE Review 20, 4, 465-470 https://doi.org/10.1016/S0389-4304(99)00040-5
  5. Hattori, Y., Koibuchi, K. and Yokoyama, T. (2002). Force and moment control with nonlinear optimum distribution for vehicle dynamics. Proc. AVEC'02, 595-600
  6. Horiuchi, S., Okada, K. and Nohtomi, S. (1999). Improvement of vehicle handling by nonlinear integrated control of four wheel steering and four wheel torque. JSAE Review, 20, 459-464 https://doi.org/10.1016/S0389-4304(99)00051-X
  7. Kawakami, H., Sato, H., Tabata, M., Inoue, H. and Itimaru, H. (1992). Development of integrated system between active control suspension. Active 4WS, TRC and ABS, SAE Paper No. 920271, 326-333
  8. Kiencke, U. and Nielsen, L. (2000). Automotive Control Systems. SAE Inc.. Springer-Verlag Berlin Heidelberg
  9. Kim, S. J., Kwak, B. H., Chung, S. J. and Kim, J. G. (2006). Development of an active front steering system. Int. J. Automotive Technology, 7, 3, 315-320
  10. Manning, W., Crolla, D., Brown, M. and Selby, M. (2000). Co-ordination of chassis subsystems for vehicle motion control. Proc. AVEC'2000, 313-319
  11. Mokhiamar, O. and Abe, M. (2004). Simultaneous optimal distribution of lateral and longitudinal tire forces for the model following control. J. Dynamic Systems, Measurement, and Control, 126, 753-763 https://doi.org/10.1115/1.1850533
  12. Nouillant, C., Assadian, F., Moreau, X., and Oustaloup, A. (2002). A cooperative control for car suspension and brake system. Int. J. Automotive Technology 3, 4, 147-155
  13. Shen, X., Li, D. and Yu, F. (2006). Study on vehicle chassis control integration based on general actuator-plant structure. Proc. AVEC'2006. (accepted)
  14. Shino, M., Raksincharoensak, P. and Nagai, M. (2002). Vehicle handling and stability control by integrated control of direct yaw moment and active steering. Proc. AVEC'2002. 25-31
  15. Slotine, E. and Li, W. (1991). Applied Nonlinear Control. Prentice-Hall. New Jersey
  16. Smakman, H. (2000). Functional integration of active suspension with slip control for improved lateral vehicle dynamics. Proc. AVEC'2000. 397-404
  17. Valasek, M., Vaculin, O., and Kejval, J. (2004). Global chassis control: Integration synergy of brake and suspension control for active safety. Proc. AVEC'2004. 495-500
  18. Van Zanten, A., Erhardt, R., Pfaff, G., Kost, F., Hartmann, U. and Ehret, T. (1996). Control aspects of the bosch- VDC. Proc. AVEC'96, 573-608
  19. Yokoya, Y., Kizu, R., Kawaguchi, H., Ohashi, K. and Ohno, H. (1990). Integrated control system between active control suspension and four wheel steering for the 1989 CELICA. SAE Paper No. 901748, 1546- 1561