Cross-linking of Acid-Base Composite Solid Polymer Electrolyte Membranes with PEEK and PSf

산-염기형 PEEK와 PSf를 이용한 고체 고분자전해질 복합막의 가교화

  • Jang, In-Young (Department of Chemical Engineering, Myongji University) ;
  • Jang, Doo-Young (Department of Chemical Engineering, Myongji University) ;
  • Kwon, Oh-Hwan (Department of Chemical Engineering, Myongji University) ;
  • Kim, Kyoung-Eon (Department of Chemical Engineering, Myongji University) ;
  • Hwang, Gab-Jin (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Sim, Kyu-Sung (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Bae, Ki-Kwang (Hydrogen Energy Research Center, Korea Institute of Energy Research) ;
  • Kang, An-Soo (Department of Chemical Engineering, Myongji University)
  • 장인영 (명지대학교 화학공학과) ;
  • 장두영 (명지대학교 화학공학과) ;
  • 권오환 (명지대학교 화학공학과) ;
  • 김경언 (명지대학교 화학공학과) ;
  • 황갑진 (한국에너지기술연구원 수소에너지연구센터) ;
  • 심규성 (한국에너지기술연구원 수소에너지연구센터) ;
  • 배기광 (한국에너지기술연구원 수소에너지연구센터) ;
  • 강안수 (명지대학교 화학공학과)
  • Published : 2006.06.15

Abstract

Hydrogen as new energy sources is highly efficient and have very low environmental emissions. The proton exchange membrane fuel cell (PEMFC) is an emerging technology that can meet these demands. Therefore, the preparation of stable polymeric membranes with good proton conductivity and durability are very important for hydrogen production via water electrolysis with PEM at medium temperature above $80^{\circ}C$. Currently Nafion of Dupont and Aciflex of Asahi, etc., solid polymer electrolytes of perfluorosulfonic acid membrane, are the best performing commercially available polymer electrolytes. However, these membrane have several flaws including its high cost, and its limited operational temperature above $80^{\circ}C$. Because of this, significant research efforts have been devoted to the development of newer and cheaper membranes. In order to make up for the weak points and to improve the mechanical characteristics with cross -linking, acid-base complexes were prepared by the combination PSf-co-PPSS-$NH_2$ with PEEK-$SO_3H$. The results showed that the proton conductivity decreased in 17.6% and 40% but tensile strength increased in 78% and 98%, about $20.65\;{\times}\;10^6N/m^2$, in comparison with SBPSf/HPA and SPEEK/HPA complex membrane.

Keywords

Aminated polysulfone;Sulfonated PEEK;Acid-Base Complexes;Heteropolyacid;Ion exchanger

References

  1. 원장묵, '에너지 기술개발 현황 및 전망', Nice, Vol. 23, NO. 5, 2005, pp. 498-505
  2. D. G. Baird, J. Huang, and J. E. McGrath, 'Polymer electrolyte membrane fuel cell', Plastic Eng., Vol. 59, 2003, p. 46
  3. R. J. Farranto, 'The Generation of Hydrogen for the Solid Polymer Membrane Fuel Cell', Chimie, Vol. 3, 2000, pp. 573-575 https://doi.org/10.1016/S1387-1609(00)00152-3
  4. X. Peixiang, P. R. Gilles, D. G. Michael, D. M. Serguei, W. Keping and K. Serge, 'Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes', J. memb. Sci., 229, 2004, pp. 95-106 https://doi.org/10.1016/j.memsci.2003.09.019
  5. C. J. Pouchert, 'The Aldrich Library of FT -IR Spectra', 1st/ed., Aldrich Chem. Co., Wisconsin, 1998
  6. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski and J. E. McGrath, 'Fabrication and characterization of heteropolyacid/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications', J. Memb. Sci., Vol. 212, 2003, pp. 263-282 https://doi.org/10.1016/S0376-7388(02)00507-0
  7. H. J. Lee, Y. K. Jung, I. Y. Jang, G. J. Hwang, K. K. Bae, K. S. Sim and A. S. Kang, 'Preparation of Polyether ether ketone (PEEK) /Heteropolyacid(HPA) Blends Membrane for Hydrogen production Via Electrodialysis', Transactions of the Korean Hydrogen and New Energy Society, Vol. 16, No. 1, 2005, pp. 40-48
  8. F. G. Helfferich, 'Ion Exchange', McGraw -Hill Book Co., New york, 1962
  9. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver and S. Kaliaguine, 'Proton Conducting Composite Membranefrom Polyether ether ketone and Hetero -polyacids for Fuel Cell Applications', J. Membr. Sci., Vol. 173, 2000, pp. 17-34 https://doi.org/10.1016/S0376-7388(00)00345-8
  10. http://www.dupont.com/fuelcells/products/nafion .html
  11. B. S0rensen, 'Hydrogen and Fuel Cells : Emerging Technologies and Applications', Elsevier Academic Press, California, 2005
  12. Y. K. Jung, H. J. Lee, I. Y. Jang, G. J. Hwang, K. K. Bae, K. S. Sim and A. S. Kang, 'Preparation of Solid Polymer Electrolytes of PSf-co-PPSS/Heteropolyacid [HPA] Composite Membrane for Hydrogen Production via Water Elecrolysis', Transactions of the Korean Hydrogen and New Energy Society, Vol. 16, No. 2, 2005, pp. 103-110
  13. J. Larminie, and A. Dicks, 'Fuel cell system explained', John Wiley & Sons, Ltd: New York, 2000
  14. S. I. Jung, C. H. Ryo, A. S. Kang and H. S. Lee, 'Manufacture and CurrentNoltage Characteristics of Bipolar Membrane with Polysulfone', J. Korea. Ind Eng. Chem., Vol. 14, No. 1, 2004, pp. 95-102
  15. K. Miyatake and M. Watanabe, 'Recent Progress in Proton Conducting Membranes for PEFCs', Electrochem., Vol. 73, No. 1, 2005, pp. 12-19