Optimization for *Elsholtzia ciliata* Hylander Extraction using Supercritical Carbon Dioxide

Kwang-Sup Youn¹, Joo-Heon Hong², Joong-Ho Kwon and Yong-Hee Choi¹

¹Department of Food Science and Technology, Kyungpook National University, Daegu 702-701, Korea  
²Department of Food Science and Technology, Catholic University of Daegu, Gyunsan 712-702, Korea

**Abstract**

This study was performed to develop flavor materials from *Elsholtzia ciliata* Hylander with analyzing functional property and aroma profile and to optimize supercritical fluid extraction method and optimum condition. The qualities of water extracts such as total yield, total phenolic compound, electron donation ability, estragole and L-carvone, were affected by extraction pressure than time. The response variables had significant with pressure than with time and the established polynomial model was suitable(P<0.05) model by Lack-of-Fit analysis. The optimum extraction conditions which were limited of maximum value for dependent variables under experimental conditions based on central composite design were 238 bar and 42 min.

**Key words**: supercritical fluid extraction, optimization, *Elsholtzia ciliata* Hylander

서 론

항유는 전국에서 자생하는 꽃과의 일년생 초본으로 강한 항기가 있으며, 한방에서는 꽃잎과의 전초를 빌한, 해열, 이뇨약으로 사용하고 있다(1). 항유에는 약 1%의 항유가 있는데, 주성분은 elsholtzia ketone이며 또한 nagnatna ketone, a-pinene, cineole, p-cymene, isovaleric acid, isobutylisovalerate, a-b-nagnatnine, octanol-3,1-octen-3-ol, linalool, camphor, geraniol, n-caproic acid, isocaproic acid 등이 함유되어 있다(2). 그 외 스테로이드나 폐놀성 물질, flavonoid 배달체 등을 함유하고 있다(3).

자생식물로부터 유용성 물질로 알려진 경유물질을 추출하기 위해서는 자원의 선발과 추출기술의 확보가 전제되어야 하는데, 천연 경유물의 추출방법으로는 원료와 경유성 분의 존재 상태 및 성질 등에 따라 다르다. 최근 이러한 경유물은 전통적인 항산료의 사용뿐 아니라 다양한 질병 치료효과를 가져가 것으로 알려져 있고 있다(4,5). 일반적인 경유물질의 추출방법은 감 للغاية와 같은 비교적 경유향량이 높은 원료의 경우에는 압착법으로 실시하거나 수중기 증류법, 동물성 유기에 쩔혀서는 증류증류법, 휘발성 용매를 이용한 추출법, 액은 첨추범법(percolation) 등이 알려져 있다. 그러나 이와의 방법들은 추출효율, 추출 시간, 추출품의 순도 등 기술적 축면에서 개선의 필요성이 지적되고 있으므로 새로운 추출·분석 방법의 개발이 요구되고 있다.

최근 천연물로부터 항기성분을 신속하고도 효과적으로 추출하는 기술로 초압경유체추출공정이 보급되며 일부 식품의 추출에 대하여도 연구되고 있다. 초압경유체 공정은 고가의 장비비를 요하는 공정이나 이산화탄소의 같은 초압계 유체를 이용한 추출방법은 추출용매의 안전성과 환경공해에 대한 우려가 있기 때문에 고부가 분목에 대한 연구 개발을 권장 하여야 할 것으로 생각된다.
이 활발히 이루어지고 있다.(6,7).

초임계수체 추출은 기존의 용매의 단점인 낮은 효율, 낮은 품질, 환경에의 영향 또는 기술적 어려움을 해결할 수 있는 새로운 혁신기술로서 주목받고 있으며 캐피린 카페인
인제나 유치의 경제 및 추출, 클레스트레일 제거, 천연색소 및 항미성분의 추출, 약물의 고미성분 제거 등에 다양하게 사용되고 있고(8) 최근에도 포도주의 추출과 금속화로부터 flavonoid류를 추출한 연구보고가 있다.(9,10).

따라서 본 연구에서는 국내에서 자체하고 있는 항유로부터 항양물질을 개발하기 위한 기초 연구로 항가성분과 항산화성물질을 최대로 추출할 수 있는 추출방법으로 초임계수체
추출법을 이용하여 최적 추출조건을 반응조건 및 분석법으로 얻고자 하였다.

제료 및 방법

제료

항유(Elsolithia ciliata Hylander)는 경북 경산시 인근 야산에서 채취하여 오일을 분리제거한 후 일부분을 모아
온건한 다음 분쇄기(LNCM, Jisico, Korea)로 분쇄한 후 표
준체 (No. 60)를 동통한 것을 -20℃ 이하의 암소에 보관하면
서 추출용 식료로 사용하였다.

초임계수체 추출

초임계 유체 추출 장치로 cooling head가 장착된 HPLC
pump(Res-980, Jasco Co., Japan)과 보조용액을 공급하는
HPLC pump, air-driven oven(CO-965 column oven, Jasco
Co., Japan)과 back-pressure regulator(880-01, Jasco Co.,
Japan)로 구성된 초임계유체 추출장치를 사용하였다. 온도
와 이산화탄소의 유속은 40℃와 20 mL/min으로 고정하고
압력과 시간을 달리하여 추출을 실시하였다.

추출수율

추출방법에 따른 추출율 수율은 추출물 임량법을 위하여
105℃에서 항유가 끓 때까지 건조한 후 추출액조제에 사용
된 원료량에 대한 백분율로서 수율을 나타내었다.

총 폐능함량 측정

총 폐능성 화합물 함량은 Folin-Denis법(11)에 따라 비세
경량하였다. 즉, 추출액을 일정하게 최적한 경량 2 mL에
Folin-Ciocalteau 용액 2 mL을 가하여 혼합하고 3 분 후 10%
Na2CO3 2 mL를 넣어 반응하고 1 시간 실온에서 방치하여
700 nm에서 흡광도를 측정하였다. 이때 표준물질로는
gallic acid를 5-50 μg/mL의 농도로 조제하여 경향곡선의
작성에 사용하였다.

전자공여작용 측정

추출물의 전자공여작용(electron donating ability)시험은
a, a-diphenyl-β-picrylhydrazyl(DPPH)를 사용한 방법(12)
로 측정하였다. 즉, DPPH 시약 12 mg를 absolute ethanol
100 mL에 용해한 후 종류수 100 mL을 가하고 50% ethanol
용액을 blank으로 하여 517 nm에서 DPPH 용액의 흡광도를
약 1.0으로 조정한 후 이 용액 5 mL를 취하여 시료용액
0.5 mL와 혼합한 후 상온에서 30분간 반응한 다음 517 nm에
서 흡광도를 측정하여 다음과 같이 계산하였다.

\[
EDA(\%) = \left(1 - \frac{\text{시료기준의흡광도}}{\text{공식시험의흡광도}}\right) \times 100
\]

취발성 항가성분의 분석

추출물의 취발성 항가성분을 분석하기 위하여 Gas
chromatography(Varian Star 3400, USA)에 의해 분리, 동정
하였다. Column은 HP-5MS(30m × 0.25 mm, film thickness :
0.25 um, Hewlett-packard Co.), USA를 사용하였고, oven
온도는 50℃에서 5분간 유지 후 230℃까지 분당 3℃씩 승온
시켜 230℃에서 30분간 유지시켰다. Helium gas를 carrier
gas로 사용하였으며(1.0 mL/min), split ratio는 30:1로 하였
다. 또한 injector 온도는 250℃, interface 온도는 280℃, MS
Ionization voltage 70 eV로 하였다. 분리된 각 Peak는 Mass
spectral libraries NIST 98에 의해 동정하였다.

추출조건의 최적화

항유의 초임계추출 최적화를 위하여 중심변점계획법
(13)으로 설계를 계획한 후 설정한 실험조건을 바탕
으로 추출실험을 실시하였다. 즉, 추출공정의 독립변수(X1)
로는 압력(bar)과 시간(min)을 선택하여 각각 5단계(-2, -1,
0, 1, 2)로 부호화하였다. 최적분석에 의한 최적조건의 예측
은 SAS (statistical analysis system) program을 이용하였고,
최적분석 결과의 제안이 최대적이거나 최소가 아니고
안정성을 기준의 경우에는 농축분석을 하여 최적점을 구하였다.
추출특성의 모니터링과 최적조건범위 예측은 각 속성변
수의 contour map을 이용하여 분석하였다.

결과 및 고찰

초임계추출조건에 따른 품질특성

초임계유체추출법으로 항유를 추출하기 위하여 독립변
수로 압력과 시간의 범위를 150에서 250 bar와 20분에서
60분간 변화시켜 추출물의 품질특성으로는 yield, total
phenolics, electron donating ability 등은 표본부에 따라
문서하여 평균값을 Table 1에 나타내었다. 
수율은 7.8%에서
4.1% 사이였으며 총폐능함량은 0.05%에서 1.07%, 전자
공여능은 46%에서 64%로 나타났다. 또한, 주요 항기 성분을
동정하기 위하여 3회 반복으로 추출실험을 실시하여
<table>
<thead>
<tr>
<th>No.</th>
<th>Pressure (bar)</th>
<th>Time (min)</th>
<th>Total yield (%)</th>
<th>Total phenolics (%)</th>
<th>Electron donating ability (%)</th>
<th>Estragole (%)</th>
<th>L-carvone (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>225</td>
<td>50</td>
<td>3.90</td>
<td>0.87</td>
<td>61.29</td>
<td>25.98</td>
<td>46.87</td>
</tr>
<tr>
<td>2</td>
<td>225</td>
<td>30</td>
<td>3.21</td>
<td>1.07</td>
<td>59.88</td>
<td>25.9</td>
<td>46.92</td>
</tr>
<tr>
<td>3</td>
<td>175</td>
<td>50</td>
<td>3.01</td>
<td>0.57</td>
<td>52.78</td>
<td>23.47</td>
<td>43.34</td>
</tr>
<tr>
<td>4</td>
<td>175</td>
<td>30</td>
<td>2.42</td>
<td>0.65</td>
<td>51.90</td>
<td>23.26</td>
<td>43.18</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>40</td>
<td>3.88</td>
<td>0.91</td>
<td>57.88</td>
<td>25.64</td>
<td>45.66</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>40</td>
<td>3.82</td>
<td>0.88</td>
<td>58.81</td>
<td>25.58</td>
<td>45.58</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>40</td>
<td>3.33</td>
<td>0.99</td>
<td>64.32</td>
<td>27.08</td>
<td>48.89</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>40</td>
<td>1.66</td>
<td>0.05</td>
<td>46.10</td>
<td>22.48</td>
<td>41.52</td>
</tr>
<tr>
<td>9</td>
<td>200</td>
<td>60</td>
<td>2.37</td>
<td>0.43</td>
<td>55.98</td>
<td>24.10</td>
<td>44.25</td>
</tr>
</tbody>
</table>

연구의 결과에 비해 적은 종류의 확실성을 확인하였다. 최적화를 위한 반응변수에 estragole과 L-carvone을 선정하여 분리 동정하였으며 추출조건에 따라 그 조건은 각각 22%에서 28%사이와 42%에서 48%였드리타났다.
추출조건의 변화에 따른 추출수율의 변화는 200 bar 이상
와 45분 이상의 조건에서 24.5% 이상의 함량을 나타내어 악력과 시간이 증가함에 따라 증가하는 양상으로 나타났다. 이는 추출수율과 악력이 비례적으로 증가한다는 Kim과 Yun의 보고(15)와 일치하였다. 총 폐말 함량의 변화는 추출 악력이 증가할수록 높았지만 추출시간에 따라서는 200 bar
이하의 악력에서는 큰 변화가 없었으나 높은 악력에서는
 오히려 낮은 추출시간에서 함량이 높은 것으로 나타났다. 전자공여능의 변화를 보면 추출시간에 따라서는 차이를 보이지 않았으나 악력이 증가함에 따라 비례적으로 증가함
을 나타내어 높은 악력에서의 추출률이 전자공여능이 높은 것으로 나타났다. 양가성분으로 선정한 estragole 함량의
변화를 살펴보면 악력의 증가에 따라 비례적인 증가율을 보여 함량이 높은 것으로 나타났지만 추출시간에 따라서는
중심 부근의 시간에서 높은 함량을 보여 적정 추출조건
로 판단되었다. 추출률의 L-carvone의 함량은 추출시간에
따라서는 큰 영향을 보이지 않으나 악력이 증가함에 따라서는
비례적으로 증가함을 보여 높은 악력에서의 추출될
에 함량증가율이 다양 함량을 확인할 수 있었다. 따라서 추출 악력의 증가에 따라서는 비례적으로 증가하는 양상을 보였으나, 추출시간의 증가에 따라 악력의 증가가 있음 후
이렇게는 함량의 증가가 없거나 오히려 낮아지는 양상으로
이는 Bao와 Byun의 보고(16)과 Kim 등(17)의 보고와 유사
하였다.

<table>
<thead>
<tr>
<th>Dependent variable(Yi)</th>
<th>The second order polynomial (^{1)})</th>
<th>R(^2)</th>
<th>P &gt; F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total yield(Y1)</td>
<td>[Y_1 = -23. 1538 + 0.2190X_1 + 0.1243X_2 - 0.0005X_1^2 + 0.0010X_1X_2 - 0.0013X_2^2]</td>
<td>0.9722</td>
<td>0.0033</td>
</tr>
<tr>
<td>Total phenolics(Y2)</td>
<td>[Y_2 = -8. 3464 + 0.0747X_1 + 0.0512X_2 - 0.0002X_1^2 - 0.0001X_1X_2 - 0.0004X_2^2]</td>
<td>0.9844</td>
<td>0.0010</td>
</tr>
<tr>
<td>Electron donating ability(Y3)</td>
<td>[Y_3 = -23. 5978 + 0.0613X_1 + 0.0422X_2 - 0.0011X_1^2 + 0.0005X_1X_2 - 0.0008X_2^2]</td>
<td>0.9874</td>
<td>0.0007</td>
</tr>
<tr>
<td>Estragole(Y4)</td>
<td>[Y_4 = 4.9504 + 0.0951X_1 + 0.2638X_2 - 0.0009X_1^2 - 0.0001X_1X_2 - 0.0002X_2^2]</td>
<td>0.9712</td>
<td>0.0035</td>
</tr>
<tr>
<td>L-carvone(Y5)</td>
<td>[Y_5 = 18. 6783 + 0.1397X_1 + 0.2689X_2 - 0.0001X_1^2 + 0.0002X_1X_2 - 0.0007X_2^2]</td>
<td>0.9982</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

\(^{1)}X_i\) Pressure (bar) ; \(X_j\) Time (min).
추출조건의 최적화
황유에 대하여 추출방법과 추출조건별 추출물의 특성을 검토하고자 이상의 분석결과를 회귀분석하여 각각의 요인 변수에 따른 반응변수인 total yield(Y1), total phenolics(Y2), electron donating ability(Y3)과 항가성분으로 estragole(Y4)와 L-carvone(Y5) 등에 대한 예측 회귀식을 Table 2에 나타내었다. 총수율이나 폐능성화적률 그리고 전자공여능 모두 Pro>F가 0.05이하로 높은 유의성을 보이며, 회귀식의 적합도로 0.95이상의 높은 적합도를 보여 수립된 회귀모형이 적합함을 확인할 수 있으며 또한 예측모델식을 활용하여 실험조건내에서 각 측정값의 예측이 가능함을 나타내었다. 또한 휘발성 항가성분에 대한 회귀식과 적합도 및 유의수준도 estragole과 L-carvone의 두 가지 주요 항가성물에 대한
조임계 이산화탄소를 이용한 항유 추출공정의 최적화

<p>| Table 3. Predicted levels of extraction conditions for the maximum responses of total yield, total phenolics, electron donation ability and major flavor component of <em>Elschoitzia ciliata</em> Hylander by the ridge analysis |
|----------------------------------|-----------------|---------|---------|---------|---------|</p>
<table>
<thead>
<tr>
<th><strong>Y</strong>&lt;sub&gt;n&lt;/sub&gt;</th>
<th>R&lt;sup&gt;2&lt;/sup&gt;</th>
<th>Prob &gt; F</th>
<th>X&lt;sub&gt;1&lt;/sub&gt;</th>
<th>X&lt;sub&gt;2&lt;/sub&gt;</th>
<th>Max. Morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total yield(%)</td>
<td>0.9722</td>
<td>0.0033</td>
<td>218.91</td>
<td>58.51</td>
<td>4.1904</td>
</tr>
<tr>
<td>Total phenolics(%)</td>
<td>0.9844</td>
<td>0.0010</td>
<td>235.98</td>
<td>26.11</td>
<td>1.0797</td>
</tr>
<tr>
<td>Electron donating ability(%)</td>
<td>0.9874</td>
<td>0.0007</td>
<td>245.54</td>
<td>48.25</td>
<td>64.2931</td>
</tr>
<tr>
<td>Estragole(%)</td>
<td>0.9712</td>
<td>0.0035</td>
<td>248.99</td>
<td>40.28</td>
<td>27.9768</td>
</tr>
<tr>
<td>L-carnvone(%)</td>
<td>0.9882</td>
<td>0.0001</td>
<td>249.99</td>
<td>39.85</td>
<td>48.8309</td>
</tr>
</tbody>
</table>

결정계수는 0.97과 0.99로 높은 적합도를 보였으며 이 때의 유의수준은 0.005, 이하의 높은 유의성을 보여 수렴된 회귀식이 적합함을 보여 주었다.

각 반응변수에 미치는 독립변수의 영향을 살펴본 결과 추출시간보다는 압력이 다른 변수로 작용함을 확인할 수 있었으며(15) 특히 추출압력에 대하여 1% 이내의 유의성이 있는 것으로 나타났다. 분산분석한 결과를 알아보면 결과 대부분의 변수에 대하여 높은 유의성을 나타내었으며 수렴된 이차 회귀식에 대한 적합성 결정계수 결과 반응변수 모두 유의성이 없어(P>0.05) 수렴된 반응식의 모형이 통제적, 유의하다고 할 수 있었다(data not shown).

추출물의 기능성분별 최적추출조건을 모니터링하기 위하여 유용성분에 대한 추출 최적조건의 조건을 Table 3에 나타내었다. 주어진 실험조건에서 대상점으로 최대점을 찾기 위하여 분산분석을 통하여 최대점과 이에 따른 추출조건을 예측하고자 하였다(17). 수용의 경우 최대점은 4.2%로 나타났으며 이때의 추출조건은 219 bar의 압력과 58.5분의 추출시간인 것으로 나타났다. 총 폐쇄화합물과 전자공여능을 최대로 하는 추출조건으로 각각 236 bar와 246 bar와 26.1분과 48.3분으로 나타났으며 이때의 최대점으로 1.08%와 64.2%인 것으로 나타났다. 또한, 항기성분인 estragole의 함량을 최대로 할 수 있는 추출조건과 같은 249 bar와 40.3분에서 27.8%의 함량을 가지는 것으로 예측되었으며, L-carnvone는 250 bar와 39.9분의 추출조건에서 48.8%의 함량을 갖는 것으로 나타나 최적조건에서의 압축조건은 대부분 높은 압력의 조건과 중심점 근처의 시간으로 나타났다.

양유추출의 최적조건 설정

양유의 추출공정은 최적화하여 최적 조건을 설정하기 위하여 이상의 결과를 바탕으로 최적 추출조건 예측 분석을 실시하였다. 즉, 항유에 대하여 추출물의 total yield(Y1), total phenolics(Y2), electron donating ability(Y3), estragole(Y4) 과 L-carnvone(Y5)의 contour map을 superimposing하여 최적 추출조건 범위를 예측하였다(Fig. 2). 주어진 실험구간내에서 추출물의 특성을 최대로 할 수 있는 조건을 제한조건으로 하였는데, 추출수온은 4.5% 이상, 총폐쇄합물이 1.0% 이상으로 하고 전자공여능은 65% 이상으로 하며 estragole의 함량은 27% 이상, L-carnvone는 65% 이상을 함유하는 추출조건을 최적조건으로 설정하였을 때 추출시간과 압력은 40-43분과 235-240 bar의 범위로 나타났다. 따라서 항유의 향료물질을 추출하기 위하여 조임계추출법으로 추출 공정을 수행할 경우, 총 추출수온과 총 폐쇄화합물과 그림 전자공여능의 기능성과 항기성분인 estragole과 L-carnvone의 함량을 증폭변수로 하여 얻어진 최적 추출조건은 Table 4에서 보는 바와 같이 최적적으로 238 bar, 42분의 추출조건이 최적으로 설정되었다.

Table 4. Optimum extraction conditions for maximum responses of total yield, total phenolics, electron donating ability and major volatile compounds of *Elschoitzia ciliata* Hylander by superimposing contour maps

<table>
<thead>
<tr>
<th>Extraction conditions</th>
<th>Optimum ranges</th>
<th>Optimum condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (bar)</td>
<td>235 - 240</td>
<td>238</td>
</tr>
<tr>
<td>Time (min)</td>
<td>40 - 43</td>
<td>42</td>
</tr>
</tbody>
</table>

Fig. 2. Superimposed contour map of optimized conditions for total yield, total phenolics, electron donating ability, estragole and L-carnvone of *Elschoitzia ciliata* Hylander as functions of extraction pressure and time by supercritical fluid extraction.

요 약

조임계추출법을 이용하여 항유로부터 항유물질을 추출
하여 항기성분과 항산화물질을 최대로 추출할 수 있는 최적 조건을 반응표면 분석법으로 얻고자 하였다. 추출물의 품질특성으로는 yield, total phenolics, electron donating ability 등을 분석하였으며 주요 항기성분으로는 estragole과 L-carvone를 선정하였다. 반응변수들은 추출시간보다는 온도의 변화에 따라 비례적으로 증가하는 경향을 보였으며, 측정된 변수에 대하여 수립된 회귀식은 높은 결정계수값을 가지는 것으로 나타났다. 추출시간보다는 압력이 더 큰 변수로 작용하여 1% 이내의 유의성이 있었으며 이와 회귀식에 대한 적합성 검정식과 결과 수립된 반응표면 모형이 통계적으로 유의하였다. 농산물세를 통하여 각 변수에 대한 최적값과 추출조건을 추적하였으며, 최적 추출조건은 실험조건내에서 추출물의 특성값을 최대로 할 수 있는 조건을 제한조건하였을 때 최적조건은 238 bar, 42분이었다.

감사의 글

본 연구는 농림기술개발사업의 일환으로 수행되었으며 지원에 감사드립니다.

참고문헌

1. 정상문, 최정, 김동완, 박범윤, 박선동 (1996) 한약자원식물학, 학문출판, 서울, p.455

(검수 2006년 3월 10일, 채택 2006년 5월 26일)