DOI QR코드

DOI QR Code

Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep

건조수축과 크리프에 의한 합성형 거더의 재령종속적 거동

  • Published : 2006.02.28

Abstract

An incremental approach to predict the time dependent flexural behavior of composite girder is presented in the framework of incremental finite element method. Age dependent nature of creep, shrinkage, and maturing of elastic modulus of concrete is prescribed in the incremental tangent description of constitutive relation derived based on the first order Taylor series expansion applying to the total from of stress-strain relation. The loop phenomenon in which age dependent nature of concrete causes stress redistribution and it causes creep in turn is taken into account in the formulation through the incremental representation of constitutive relation. The developed algorithm predicts the time dependent deflections of 4.8m long two span double composite box girder subjected to shrinkage, maturing of elastic modulus, and creep initially induced by self weight. Comparison shows a good agreement between the predicted and measured results.

References

  1. Bradford, M. A., 'Deflections of Composite Steel-Concrete Beams Subject to Creep and Shrinkage', ACI Structural Journal, Vol.88, No.5, 1991, pp.610-614
  2. Bradford, M. A., 'Shrinkage Behavior of Steel-Concrete Composite Beams', ACI Structural Journal, Vol.94, No.6, 1997, pp.625-632
  3. Chiu, H. S., Chern, J. C., and Chang, K. C., 'Long- Term Deflection Control in Cantilever Prestressed Concrete Bridges', Journal of Engrg. Mech., Vol.122, No.6, 1993, pp.495-501
  4. Ghali, A. and Azamejad, A. 'Deflection Prediction of Members of Any Concrete Strength', ACI Structural Journal, VoI.96, No.5, 1999, pp.807-816
  5. Bazant, Z. P. 'Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method', ACI Structural Journal, Vol.69, No.4, 1972, pp.212-217
  6. Rusch, H., Jungwirth, D., and Hilsdorf, H. K., Creep and Shrinkage Their Effect on the Behavior of Concrete Structures, Springer-verlag, New York, Heidelberg, Berlin, 1983
  7. Chern, J.C., Wu, Y.G., Chan, Y.W., and Chou, T.Y., Long Term Behavior of a Composite Prestressed Concrete Railway Bridge: Part II-Constitutive Law and Analysis, ACI SP 129-7, 1991, pp.115-142
  8. Kawano, A. and Warner, R.F., 'Model Fonnulations for Numerical Creep Calculations for Concrete', Journal of Str. Engrg. ASCE, Vol.122, No.3, 1992, pp.284-290
  9. Jendele, L. and Phillips, D. V., 'Finite Element Software for Creep and Shrinkage in Concrete', Computers & Structures, Vol.45, No.1, 1992, pp.113-126 https://doi.org/10.1016/0045-7949(92)90349-5
  10. Pisani, M. A., 'Numerical Analysis of Creep Problems', Computers and Structures, Vol.51, No.1, 1996, pp.57-63 https://doi.org/10.1016/0045-7949(94)90036-1
  11. Lee, Y. H. and Seong, K. W., 'Age Dependent Incremental Tangent Material Law of Concrete', Journal of Engrg. Mech., ASCE, 2005(submitted for publication)
  12. 안성수, 콘크리트의 재령종속적 재료특성에 관한 수치적 모델링, 건국대학교 박사학위 논문, 2002
  13. Kwak, H. G. and Sea, Y. J., 'Long- Term Behavior of Composite Girder Bridges', Computers & Structures, Vol.74, No.5, 2000, pp.583-599 https://doi.org/10.1016/S0045-7949(99)00064-4
  14. Gilbert, R. I. and Bradford, M. A., 'Time-Dependent Behavior of Continuous Beams at Service Loads', Journal of Str. Engrg, ASCE, Vol.121, No.2, 1995, pp.319-327 https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319)
  15. 성원진, 김정현, 이용학, '단면해석법을 이용한 휨부재의 재령종속적 처짐해석', 콘크리트학회 논문집, 16권 2호, 2004. 4, pp.155-162

Cited by

  1. A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel vol.16, pp.5, 2012, https://doi.org/10.11112/jksmi.2012.16.5.019