유리와 탄소섬유로 제작된 하이브리드 FRP 로드의 인장특성에 관한 실험연구

DOI QR코드

DOI QR Code

유영준;박지선;박영환;김긍환
You, Yong-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan

  • 발행 : 2006.04.30

초록

최근 철근 콘크리트 구조물에서 철근의 부식문제를 근본적으로 해결하기 위한 대안으로 섬유강화폴리머(Fiber Reinforced Polymers, FRP)가 주목받고 있다. FRP는 철근에 비해 높은 비강도를 가지며, 무게가 가볍다. 특히 내부식성이 뛰어나 염해와 같은 열악한 환경에 특히 유용하다. 그러나 재료단가가 철근에 비해 높고, 장기거동에 대해 구축되어 있는 정보가 적으며 항복 거동을 보이는 철근과는 달리 취성파괴를 일으키기 때문에 FRP를 토목재료로 사용하려는 노력은 더디게 진행되고 있다. FRP 제작에 사용되는 섬유 중 유리섬유가 가장 경제적이지만 강성이 철근에 비해 대략 1/4 정도 밖에 되지 않아 휨부재에 사용될 경우 과도한 처짐 문제가 발생한다. 이에 본 연구에서는 유리섬유로 제작된 FRP(Glass Fiber Reinforced Polymer, GFRP) 로드(Rod)의 인장특성을 개선하고자 탄소와 유리섬유로 제작된 하이브리드 로드의 인장특성에 관한 연구를 수행하였다. 로드 제작에 사용되는 수지 종류와 배치 방법에 대해 변수를 설정하여 총 40개의 시편을 제작하여 인장실험을 실시하였다. 하이브리드 로드의 인장특성은 섬유가 혼합되지 않은 순수한 유리섬유와 탄소섬유로만 제작된 로드의 인장특성과 비교하였다. 실험 결과에 따르면 로드의 핵은 탄소섬유로, 외피는 유리섬유로 제작된 하이브리드 로드의 인장특성이 가장 우수하였다.

키워드

하이브리드;탄소섬유;유리섬유;섬유 복합체;인장강도

참고문헌

  1. 한국건설기술연구원, FRP 복합재료 보강재 개발 및 이를 활용한 콘크리트 구조물 건설기술 개발, 1차년도 최종보고서, 2004
  2. Nanni, A. E., and Dolan, C. W., eds., 'Fiber reinforced plastic reinforcement for concrete structures', Proc. Int. Symp., American Concrete Institute, Detroit, Mich., 1993
  3. Harris, H. G., Somboonsong, W., and Ko, F. K., 'New Ductile Hybrid FRP Reinforcing Bar for Concrete Structures', Journal of Composites for Construction, ASCE, Vol.2, No.1, 1998, pp.28-37 https://doi.org/10.1061/(ASCE)1090-0268(1998)2:1(28)
  4. Jones, K. D. and DiBenedetto, A. T., 'Fiber fracture in hybrid composite systems', Composites Science and Technology, Vol.51, No.1, 1994, pp.53-62 https://doi.org/10.1016/0266-3538(94)90156-2
  5. Phillips, L.N., 'The hybrid effect - does it really exist', Composites, Vol.7, No.1, 1976, pp.7-8 https://doi.org/10.1016/0010-4361(76)90273-1
  6. Bakis, C. E., Nanni, A., Terosky, J. A., and Koehler, S. W., 'Self-monitoring, pseudo-ductile, hybrid FRP reinforcement rods for concrete application.', Composite Science and Technology, Vol.61, No.6, 2001
  7. CSA S806-02, Test Method for Tensile Properties of FRP Reiriorcemeni. Canadian Standard Association, Annex C, 2002
  8. ASTM D 3916, Standard Test Method for Tensile Properties of Pultruded Glass- Fiber- Reinforced Plastic Rods, American Society of Testing and Material, ASCE, 2002
  9. Yujin Liang, Changsen Sun, and Farhad Ansari, 'Acoustic Emission Characterization of Damage in Hybrid Fiber-Reinforced Polymer Rods'. Journal of Composites for Construction, ASCE, Vol.8, No.1, 2004, pp.70-78 https://doi.org/10.1061/(ASCE)1090-0268(2004)8:1(70)
  10. Kretsis, G., 'A reviewof the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics', Composites, Vol.18, No.1, 1987, pp.13-23 https://doi.org/10.1016/0010-4361(87)90003-6
  11. Mufti, A., Erki, M. A., and Jaeger, L., eds., Advanced composites materials with application to bridges, Canadian Society of Civil Engineers, Montreal, Canada, 1991
  12. Malvar, L. J. and Bish, J., 'Grip effects in tensile testing of FRP bars', Proc. 2nd Int. RILEM Symposium on Non-Metallic (FRP) Reirforcemeni for Concrete Structures, L. Taerwe, ed., Univ, of Ghent, Belgium, 1995. pp.105-115