DOI QR코드

DOI QR Code

DERIVATIONS OF A RESTRICTED WEYL TYPE ALGEBRA ON A LAURENT EXTENSION

  • Choi Seul-Hee (Department of Mathematics Jeongju University)
  • Published : 2006.04.01

Abstract

Several authors find all the derivations of an algebra [1], [3], [7]. A Weyl type non-associative algebra and its sub algebra are defined in the paper [2], [3], [10]. All the derivations of the non-associative algebra $\overline{WN_{0,0,s1}$ is found in this paper [4]. We find all the derivations of the non-associative algebra $\overline{WN_{0,s,01}$ in this paper [5].

Keywords

simple;non-associative algebra;right identity;annihilator;idempotent;derivation

References

  1. M. H. Ahmadi, K. -B. Nam, and J. Pakianathan, Lie admissible non-associative algebras, Algebra Colloquium, Vol. 12, No. 1, World Scientific, March, 2005, 113-120 https://doi.org/10.1142/S1005386705000106
  2. S. H. Choi and K. -B. Nam, The Derivation of a Restricted Weyl Type Non-Associative Algebra, Hadronic Journal, Vol. 28, Number 3, Hadronic Press, June, 2005, 287-295
  3. S. H. Choi, Weyl Type Non-Associative Algebra II, SEAMS Bull Mathematics, Vol. 29, 2005
  4. S. H. Choi, Derivations of a restricted Weyl Type Algebra I, Rocky Mountain Math. Journal, Appear, 2005
  5. I. N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, Mathematical association of America, 100-101
  6. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1987, 7-21
  7. V. G. Kac, Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 38 (1974), 832-834
  8. T. Ikeda, N. Kawamoto, Ki-Bong Nam, A class of simple subalgebras of generalized Witt algebras, Groups-Korea '98(Pusan), de Gruyter, Berlin, 2000, 189-202
  9. A. I. Kostrikin and I. R. Safarevic, Graded Lie algebras of finite characteristic, Math. USSR Izv. 3 (1970), No. 2, 237-240 https://doi.org/10.1070/IM1969v003n02ABEH000766
  10. K. -S. Lee and K. -B. Nam, Some W -type algebras I., J. Appl. Algebra Discrete Struct. 2 (2004), No. 1, 39-46
  11. K. -B. Nam, Generalized Wand H type Lie Algebras, Algebra Colloquium, 1999, 329-340
  12. D. Passman, Simple Lie Algebras of Witt-Type, Journal of Algebra 206 (1998), 682-692 https://doi.org/10.1006/jabr.1998.7444
  13. A. N. Rudakov, Groups of Automorphisms of Infinite-Dimensional Simple Lie Algebras, Math. USSR-Izvestija 3 (1969), 707-722 https://doi.org/10.1070/IM1969v003n04ABEH000798
  14. K. -B. Nam and S. H. Choi, Automorphism group of non-associative algebras WN$_{2,0,01}$, J. Computational Mathematics and Optimization, Vol. 1 (2005), No. 1, 35-44

Cited by

  1. Algebra Versus Its Anti-symmetric Algebra vol.16, pp.04, 2009, https://doi.org/10.1142/S1005386709000625
  2. AN EXTENDED NON-ASSOCIATIVE ALGEBRA vol.29, pp.2, 2007, https://doi.org/10.5831/HMJ.2007.29.2.213