DOI QR코드

DOI QR Code

A CHARACTERIZATION OF BLOCH FUNCTIONS

Kwon Ern-Gun;Shim Ok-Hee;Bae Eun-Kyu

  • Published : 2006.04.01

Abstract

On the unit disk of the complex plane, a characterization of Bloch function is expressed extending known result.

Keywords

Besov space;Bloch space;Bergman space

References

  1. L. A. Rubel and R. Timoney, An essential property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45-49
  2. S. Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke. Math. J. 53 (1986), 315-332 https://doi.org/10.1215/S0012-7094-86-05320-2
  3. J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981
  4. C. Ouyang, W. Yang, and R. Zhao, Characterizations of Bergman Spaces and Bloch Space in the Unit Ball of C$^n$, Trans. Amer. Math. Soc. 347 (1995), 4301-4313 https://doi.org/10.2307/2155039
  5. K. Stroethoff, Besov-type characterization for the Bloch spaces jour Bull. Austral. Math. Soc. 39 (1989), 405-420 https://doi.org/10.1017/S0004972700003324
  6. M. Nowak, Bloch space on the unit ball of C$^n$, Ann. Acad. Sci. Fenn. Math. 23 (1998), 461-473
  7. K. Stroethoff, The Bloch Space and Besov spaces of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211-219 https://doi.org/10.1017/S0004972700017676

Cited by

  1. Some characterizations of the Besov space and the α-Bloch space vol.346, pp.1, 2008, https://doi.org/10.1016/j.jmaa.2008.05.044
  2. Lacunary Series in Weighted HyperholomorphicBp,q(G) Spaces vol.32, pp.1, 2010, https://doi.org/10.1080/01630563.2010.526409
  3. Lacunary series in quaternion Bp,qspaces vol.54, pp.7, 2009, https://doi.org/10.1080/17476930902999116