DOI QR코드

DOI QR Code

ON GENERIC SUBMANIFOLDS OF MANIFOLDS EQUIPPED WITH A HYPERCOSYMPLECTIC 3-STRUCTURE

  • Kim Jeong-Sik ;
  • Choi Jae-Dong ;
  • Tripathi Mukut Mani
  • Published : 2006.04.01

Abstract

Generic submanifolds of a Riemannian manifold endowed with a hypercosymplectic 3-structure are studied. Integrability conditions for certain distributions on the generic submanifold are discussed. Geometry of leaves of certain distributions are also studied.

Keywords

almost contact metric 3-structure;hypercosymplectic 3-structure;generic submanifold and geometry of leaves

References

  1. A. Bejancu, Generic sub manifolds of manifolds with a Sasakian 3-structure, Math. Rep. Toyama Univ. 8 (1986), 75-101
  2. M. Berger, Sur les qroupes d'holonomie homogene des vrietes a connexion affine et des varietes riemannienes, Bull. Soc. Math. France 83 (1955), 279-330
  3. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer Verlag, 1976
  4. C. P. Boyer, K. Galicki and B. M. Mann, Quaternionic reduction and Einstein manifolds, Comm. Anal. Geom. 1 (2) (1993), 229-279 https://doi.org/10.4310/CAG.1993.v1.n2.a3
  5. S. Ishihara, Quaternion Kahlerian manifolds, J. Differential Geometry 9 (1974), 483-500 https://doi.org/10.4310/jdg/1214432544
  6. T. Kashiwada, A note on a Riemannian space with Sasakian 3-structure, Natural Science Report, Ochanomizu University, 22 (1971), no. 1, 1-2
  7. Y. -M. Song, J. –S. Kim, M. M. Tripathi, On hypersurfaces of manifolds equipped with a hypercosymplectic 3-structure, Commun. Korean Math. Soc. 18 (2003), no. 2, 297-308 https://doi.org/10.4134/CKMS.2003.18.2.297
  8. Y. -Y. Kuo, On almost contact 3-structure, Tohoku Math. J. 22 (1970), 325-332 https://doi.org/10.2748/tmj/1178242759
  9. F. Martin Cabrera, Almost hyper-Hermitian structures in bundle space over manifolds with almost contact 3-structure, Czechoslovak Math. J. 48 (123) (1998), no. 3, 545-563 https://doi.org/10.1023/A:1022431912510
  10. K. Yano and M. Kon, Structures on a manifold, World Scientific, 1984

Cited by

  1. On generic submanifolds of manifolds endowed with metric mixed 3-structures vol.18, pp.06, 2016, https://doi.org/10.1142/S0219199715500819
  2. Statistical Manifolds with almost Quaternionic Structures and Quaternionic Kähler-like Statistical Submersions vol.17, pp.9, 2015, https://doi.org/10.3390/e17096213