DOI QR코드

DOI QR Code

ON THE EXPONENTIAL FUZZY PROBABILITY

  • Yun Yong-Sik ;
  • Song Jae-Choong ;
  • Ryu Sang-Uk
  • Published : 2006.04.01

Abstract

We study the exponential fuzzy probability for quadratic fuzzy number and trigonometric fuzzy number defined by quadratic function and trigonometric function, respectively. And we calculate the exponential fuzzy probabilities for fuzzy numbers driven by operations.

Keywords

exponential fuzzy probability;quadratic fuzzy number

References

  1. Y. S. Yun, J. C. Song and S. U. Ryu, Normal fuzzy probability for trigonometric fuzzy number, Journal of applied mathematics and computing 19, no.1-2 (2005), 513-520
  2. L. A. Zadeh, Fuzzy Sets, Information and control 8 (1965), 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X
  3. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - I, Information Sciences 8 (1975), 199-249 https://doi.org/10.1016/0020-0255(75)90036-5
  4. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - II, Information Sciences 8 (1975), 301-357 https://doi.org/10.1016/0020-0255(75)90046-8
  5. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning - III, Information Sciences 9 (1975), 43-80 https://doi.org/10.1016/0020-0255(75)90017-1
  6. H. J. Zimmermann, Fuzzy Set Theory - and Its Applications, Kluwer-Nijhoff Publishing (1985)
  7. Y. S. Yun, J. C. Song and J. W. Park, Normal fuzzy probability for quadratic fuzzy number, Journal of fuzzy logic and intelligent systems 15, no. 3 (2005), 277-281 https://doi.org/10.5391/JKIIS.2005.15.3.277
  8. L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl. 23 (1968), 421-427 https://doi.org/10.1016/0022-247X(68)90078-4
  9. L. A. Zadeh, Fuzzy sets as a basis for a theory of passibility, Fuzzy sets and system 1 (1978), 3-28 https://doi.org/10.1016/0165-0114(78)90029-5
  10. J. C. Song and Y. S. Yun, On the normal fuzzy probability, Journal of Basic Sciences 17, no. 2 (2004), 17-27
  11. M. Bhattacharyya, Fuzzy Markovian decision process, Fuzzy Sets and Systems 99 (1998), 273-282 https://doi.org/10.1016/S0165-0114(96)00400-9