DOI QR코드

DOI QR Code

5-Axis Tool Path Generation from Offset Polyhedral Mesh

옵셋 다면체를 이용한 5축 가공경로 생성

  • 김수진 (경상대학교 기계항공공학부) ;
  • 양민양 (한국과학기술원 기계공학과)
  • Published : 2006.06.01

Abstract

In this paper, the 5-axis tool path that has been generated from the original surface is, newly generated from the offset polyhedral mesh. In this approach, the interference check between two solid models can be simplified to that of offset polyhedral mesh and axis line. The tool path computation and interference check based on the offset mesh is simpler and faster than that based on the original surface. But 5-axis tool path generation using this approach is able to apply only for ball endmill and still takes longer time than 3-axis tool path generation.

Keywords

5-Axis Tool Path;Interference;Offset Mesh;Polyhedral Mesh

References

  1. Marciniak, K., 1987, 'Influence of Surface Shape on Admissible Tool Positions in 5-Axis Face Milling,' Computer Aided Design, 19(5), pp. 233-236 https://doi.org/10.1016/0010-4485(87)90260-0
  2. Baptista, R. and Simoes, J.F.A., 2000, 'Three and Five Axes Milling of Sculptured Surfaces,' Journal of Materials Processing Technology, 103(3), pp. 398-403 https://doi.org/10.1016/S0924-0136(99)00479-3
  3. Gray, P., Bedi, S., Ismail, F., Rao, N. and Morphy, G., 2001, 'Comparison of 5-Axis and 3-Axis Finish Machining of Hydroforrning Die Inserts,' The International Journal of Advanced Manufacturing Technology, 17(8), pp. 562-569 https://doi.org/10.1007/s001700170139
  4. Cho, H. Y., Jang, D. K., Lee, H. K. and Yang, G.E. 2003, 'A Study on Efficient Roughing of Impeller With 5-Axis NC Machine,' Transactions of the KSME A, 27(11), pp. 1917-1924 https://doi.org/10.3795/KSME-A.2003.27.11.1917
  5. Piao, C. D., Lee, C. S., Cho, K. Z. and Park, O. R., 2004, 'Automatic NC-Data Generation Method for 5-axis Cutting of Turbine-Blades by Finding Safe HeelAngles and Adaptive Pathe-Intervals,' KSME International Journal, 18(5), pp. 753-761 https://doi.org/10.1007/BF02990293
  6. Young, H.T. and Chuang, L.C., 2003, 'An Integrated Machining Approach for a Centrifugal Impeller,' The International Journal of Advanced Manufacturing Technology, 21(8), pp. 556-563 https://doi.org/10.1007/s00170-002-1382-3
  7. Sing, S., Mannan, M. A. and Poo, A.N., 2004, 'Oriented Bounding Box and Octree Based Global Interference Detection in 5-Axis Machining of Freeform Surfaces,' Computer Aided Design, 36(13), pp.1281-1294 https://doi.org/10.1016/S0010-4485(03)00109-X
  8. Ho, S., Sarma, S. and Adachi, Y., 2001, 'Real-Time Interference Analysis Between a Tool and an Environment,' Computer Aided Design, 33(13), pp. 935-947 https://doi.org/10.1016/S0010-4485(00)00117-2
  9. Morishige, K., Takeuch, Y. and Kase, K., 1999, 'Tool Path Generation Using C-Space for 5-Axis Control Machining,' ASME, 121, pp. 144-149 https://doi.org/10.1115/1.2830567
  10. Jun, C. S., Cha, K. D. and Lee, Y. S., 2003, 'Optimizing Tool Orientations for 5-Axis Machining by Configuration-Space Search Method,' Computer Aided Design, 35, pp. 549-566 https://doi.org/10.1016/S0010-4485(02)00077-5
  11. Yang, W., Ding, H. and Xiong, Y., 1999, 'Manufacturability Analysis for a Sculptured Surface Using Visibility Cone Computation,' The International Journal of Advanced Manufacturing Technology, 15(5), pp.317-321 https://doi.org/10.1007/s001700050073
  12. Balasubrarnanian, M., Laxmiprasad, P., Sarma, S. and Shaikh, Z., 1999, 'Generating 5-Axis NC Roughing Paths Directly from a Tessellated Representation,' Computer Aided Design, 32, pp. 261-277 https://doi.org/10.1016/S0010-4485(99)00103-7
  13. Balasubrarnanian, M. and. Sarma, S. E., 2003, 'Collision-Free Finishing Toolpaths from Visibility Data,' Computer Aided Design, 35, pp. 359-374 https://doi.org/10.1016/S0010-4485(02)00057-X
  14. Kim, S. J.and Yang, M. Y., 2005, 'Triangular Mesh Offset for Generalized Cutter,' Computer Aided Design, 37, pp. 999-1014 https://doi.org/10.1016/j.cad.2004.10.002
  15. Jun, C. S., Kim, D. S. and Park, S. H., 2003, 'A New Curve-Based Approach to Triangle Machining,' Computer Aided Design, 34(5), pp. 379-389 https://doi.org/10.1016/S0010-4485(01)00110-5
  16. Park, S. C., 2004, 'Sculptured Surface Machining Using Triangular Mesh Slicing,' Computer Aided Design, 36(3), pp. 279-288 https://doi.org/10.1016/S0010-4485(03)00114-3
  17. Kim, S. J. and Yang, M. Y., 2005, 'Uniform Scallop Height Tool Path Generation Using CL Surface Deformation,' Transactions of the KSME A, 29(6), pp. 895-903 https://doi.org/10.3795/KSME-A.2005.29.6.895
  18. B. K. and Lee, Y. S., 2002, 'Non-Uniform Offsetting and Hollowing Objects by Using Biarcs Fitting for Rapid Prototyping Process,' Computers in Industry, 47, pp. 1-23 https://doi.org/10.1016/S0166-3615(01)00141-5
  19. Qu, X. and Stucker, B., 2003, 'A 3D Surface Offset Method for STL-Format Models,' Rapid Prototyping Journal, 9(3), pp. 133-141 https://doi.org/10.1108/13552540310477436
  20. Kim, S. J., Lee, D. Y. and Yang, M. Y., 2004, 'Offset Triangular Mesh Using the Multiple Normal Vectors of a Vertex,' Computer-Aided Design and Applications, 1(1-4), pp.285-292 https://doi.org/10.1080/16864360.2004.10738269