Effects of Urea Level and Sodium DL-malate in Concentrate Containing High Cassava Chip on Ruminal Fermentation Efficiency, Microbial Protein Synthesis in Lactating Dairy Cows Raised under Tropical Condition

  • Khampa, S. (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University) ;
  • Wanapat, Metha (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University) ;
  • Wachirapakorn, C. (Tropical Feed Resources Research and Development Center (TROFREC), Faculty of Agriculture Khon Kaen University) ;
  • Nontaso, N. (Department of Microbiology, Faculty of Science, Khon Kaen University) ;
  • Wattiaux, M. (Department of Dairy Science, University of Wisconsin)
  • Received : 2005.09.26
  • Accepted : 2005.12.30
  • Published : 2006.06.01


Four, lactating dairy cows were randomly assigned according to a $2{\times}2$ Factorial arrangement in a $4{\times}4$ Latin square design to study supplementation of urea level (U) at 2 and 4% and sodium dl-malate (M) at 10 and 20 g/hd/d in concentrate. The treatments were as follows U2M10, U2M20, U4M10 and U4M20, respectively. The cows were offered the treatment concentrate at a ratio to milk yield at 1:2.5 and urea-treated rice straw was fed ad libitum. The results have revealed that rumen fermentation and blood metabolites were similar for all treatments. The populations of protozoa and fungal zoospores were significantly different as affected by urea level and sodium dl-malate. In addition, the viable bacteria were similar for amylolytic and proteolytic bacteria. Cellulolytic bacteria were significantly affected by level of sodium dl-malate especially Selenomonas ruminantium and Megasphaera elsdenii while Butyrivibrio fibrisolvens was significantly affected by level of urea supplementation. In conclusion, the combined use of concentrate containing high level of cassava chip at 75% DM with urea at 4% in concentrate and sodium dl-malate at 20 g/hd/d with UTS as a roughage could improv rumen ecology and microbial protein synthesis efficiency in lactating dairy cows.


Urea;Sodium DL-malate;Rumen Fermentation;Cassava Chip;Urea-treated Rice Straw;Tropical Dairying


Supported by : Khon Kaen University


  1. Callaway, T. R. and S. A. Martin. 1996. Effects of organic acid and monensin treatment on in vitro mixed ruminal microorganism fermentation of cracked corn. J. Anim. Sci. 74:1982-1989
  2. Chanjula, P., M. Wanapat, C. Wachirapakorn, S. Uriyapongson and P. Rowlinson. 2003. Ruminal degradability of tropical feeds and their potential use in ruminant diets. Asian-Aust. J. Anim. Sci. 16:211-216
  3. Chanjula, P., M. Wanapat, C. Wachirapakorn, S. Uriyapongson and P. Rowlinson. 2004. Effect of synchronizing starch sources and protein (NPN) in the rumen on feed intake, rumen microbial fermentation, nutrient utilization and performance of lactating dairy cows. Asian-Aust. J. Anim. Sci. 17:1400-1410
  4. Crocker, C. L. 1967. Rapid determination of urea nitrogen in serum or plasma without deproteinzation. Am. J. Medical Techn. 33:361-365
  5. Erdman, R. A. 1988. Dietary buffering requirements of the lactating dairy cows. A review. J. Dairy Sci. 71:3246-3266
  6. Goering, H. K. and P. J. Van Soest. 1970. Forage Fiber Analysis (apparatus, reagent, procedures and some application). Agric. Handbook No. 379, ARS, USDA, Washington, DC
  7. Newbold, C. J., R. J. Wallace and F. M. McIntosh. 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76:249-261
  8. Shingfield, K. J. and N. W. Offer. 1998. Determination of allantoin in bovine milk by high-performance liquid chromatography. J. Chromatogr. B. 706:342-346
  9. Wohlt, J. E., J. H. Clark and F. S. Blaisdell. 1978. Nutritional value of urea versus preformed protein for ruminants. II. Nitrogen utilization by dairy cows fed corn based diets containing supplemental nitrogen from urea and/or soybean meal. J. Dairy Sci. 61:916-931
  10. Giesecke, D., L. Ehrentrich and M. Stangassinger. 1994. Mammary and renal excretion of purine metabolites in relation to energy intake and milk yield in dairy cows. J. Dairy Sci. 77:2376-2381
  11. Khampa, S., M. Wanapat, C. Wachirapakorn, N. Nontaso and M. Wattiaux. 2006. Effect of levels of sodium dl-malate supplementation on ruminal fermentation efficiency in concentrates containing high levels of cassava chip in dairy steers. Aisan-Aust. J. Anim. Sci. (In Press)
  12. Martin, S. A., M. N. Streeter, D. J. Nisbet, G. M. Hill and E. E. Williams. 1999. Effect of DL-malate on ruminal metabolism and performance of cattle fed a high concentrate diets. J. Anim. Sci. 77:1008-1015
  13. Wanapat, M. 2000. Rumen manipulation to increase the efficient use of local feed resources and productivity of ruminants in the tropics. Asian-Aust. J. Anim. Sci. 13:59-67
  14. Asanuma, N., M. Iwamoto and T. Hino. 1999. Effect of the addition of fumalate on methane production by ruminal microorganisms in vitro. J. Dairy Sci. 82:780-787
  15. Hungate, R. E. 1969. A roll tube method for cultivation of stric anaerobes. In: Methods in Microbiology. (Ed. J. R. Norris and D. W. Ribbons). New York
  16. Valadares, R. F. D., G. A. Broderick, S. C. Valadares Filho and M. K. Clayton. 1999. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 82:2686-2696
  17. Hoover, W. H. and S. R. Stokes. 1991. Balancing carbohydrate and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3640-3644
  18. Gottschalk, G. 1986. Bateria metabolism (2nd Ed.). Sparinger- Verlag. New York
  19. Promkot, C. and M. Wanapat. 2005. Effect of level of crude protein and use of cottonseed meal in diets containg cassava chips and rice straw for lactating dairy cows. Asian-Aust. J. Anim. Sci. 18:502-511
  20. Sanson, D. W. and O. T. Stallcup. 1984. Growth response and serum constituents of Holstein bulls fed malic acid. Nut. Rep. Int. 30:1261-1267
  21. Cotta, M. A. and J. B. Russell. 1982. Effect of peptides and amino acids on efficiency of rumen bacteria protein synthesis in continuous culture. J. Dairy Sci. 65:226-234
  22. IAEA. 1997. Estimation of the rumen microbial protein production from purine derivatives in rumen. Animal production and healt section. Vienna, Austria
  23. France, J. and R. C. Siddons. 1993. Volatile fatty acid production. In: Quantilitive Aspects Ruminant Digestion and Metabolisim (Ed. J. M. Forbes and J. France). CAB International, Willingford, UK
  24. Wanapat, M. 1990. Nutritional Aspects of Ruminant Production in Southeast Asia with Special Reference to Thailand. Funny Press, Ltd., Bangkok, Thailand
  25. Fernandez, J. M., T. Sahulu, C. Lu, D. Ivey and M. J. Potchoiba. 1987. Production and metabolic aspects of non-protein nitrogen incorporation in lactation rations of dairy goats. Small Rum. Res. 26:105-107
  26. SAS. 1998. SAS/STAT User's Guide. Version 6.12. SAS Inst. Inc., Cary, NC, USA
  27. Galyean, M. 1989. Laboratory Procedure in Animal Nutrition Research. Department of Animal and Life Science. New Mexico states University, USA
  28. Sommart, K., M. Wanapat, D. S. Parker and P. Rowlinson. 2000. Cassava chip as an energy source for lactating dairy cows fed rice straw. Asian-Aust. J. Anim. Sci. 13:1094-1101
  29. Owens, F. N., D. S. Secrist, W. J. Hill and D. R. Gill. 1998. Acidosis in cattle: a review. J. Anim. Sci. 76:275-286
  30. Wanapat, M. 2003. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Aust. J. Anim. Sci. 16:463-472
  31. Chen, X. B. and M. J. Gomes. 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives-an overview of the technical details. International Feed Resources Unit, Rowel Research Institute, Aberdeen, UK
  32. Van Keulen, J. and B. A. Young. 1977. Evaluation of acid insoluble ash as a neutral marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287
  33. Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69:2755-2766
  34. Kim, Y. J., R. H. Liu, L. L. Rychlik and J. B. Russell. 2002. The enrichment of a ruminal bacterium (Megasphaere elsdenii Y J- 4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. Appl. Environ. Microbiol. 92:976-982
  35. Kiyothong, K. and M. Wanapat. 2004. Growth, hay yield and chemical composition of cassava and Stylo 184 grown under intercropping. Aisan-Aust. J. Anim. Sci. 17:799-807
  36. Zinn, A. R. and F. N. Owen. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can. J. Anim. Sci. 66:157-163
  37. Wanapat, M. and O. Pimpa. 1999. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Aust. J. Anim. Sci. 12:904-907
  38. Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedure of Statistics. McGraw-Hill Publishing Co., New York
  39. AOAC. 1985. Official Methods of Analysis. Association of Official Analysis Chemists, DC, USA
  40. Lopez, S., C. Newbold and R. J. Wallace. 1999. Influence of sodium fumarate addition on rumen fermentation in vitro. Br. J. Nutr. 81:59-64

Cited by

  1. Bacterial diversity in the rumen of Indian Surti buffalo (Bubalus bubalis), assessed by 16S rDNA analysis vol.51, pp.3, 2010,
  2. Dasytricha Dominance in Surti Buffalo Rumen Revealed by 18S rRNA Sequences and Real-Time PCR Assay vol.63, pp.3, 2011,
  3. Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study vol.39, pp.4, 2012,
  4. Effect of carbohydrate sources and cotton seed meal in the concentrate: II. Feed intake, nutrient digestibility, rumen fermentation and microbial protein synthesis in beef cattle vol.44, pp.1, 2012,
  5. ) Fed Ration (Wheat Straw and Concentrate Mixture Diet) vol.2013, pp.2090-3162, 2013,
  6. Effect of carbohydrate source and cottonseed meal level in the concentrate: IV. Feed intake, rumen fermentation and milk production in milking cows vol.45, pp.2, 2013,
  7. Antibacterial, anti-inflammatory and probiotic potential of Enterococcus hirae isolated from the rumen of Bos primigenius vol.30, pp.7, 2014,
  8. Effects of Dietary Linseed Oil and Propionate Precursors on Ruminal Microbial Community, Composition, and Diversity in Yanbian Yellow Cattle vol.10, pp.5, 2015,
  9. Effect of protein level and urea in concentrate mixture on feed intake and rumen fermentation in swamp buffaloes fed rice straw-based diet vol.47, pp.4, 2015,
  10. Feeding tropical dairy cattle with local protein and energy sources for sustainable production vol.46, pp.1, 2018,
  11. Genomically Defined Paenibacillus polymyxa ND24 for Efficient Cellulase Production Utilizing Sugarcane Bagasse as a Substrate pp.1559-0291, 2018,