DOI QR코드

DOI QR Code

Effect of the Mixed Oil and Monensin Supplementation, and Feeding Duration of Supplements on c9,t11-CLA Contents in Plasma and Fat Tissues of Korean Native (Hanwoo) Steers

Wang, J.H.;Choi, S.H.;Lim, K.W.;Kim, K.H.;Song, Man K.

  • 투고 : 2005.11.11
  • 심사 : 2006.03.13
  • 발행 : 2006.10.01

초록

The present study was conducted with twenty-four Korean native (Hanwoo) steers to observe the effect of mixed oil and monensin supplementation and duration of feeding on c9,t11-CLA content in plasma and fat tissues. The steers were randomly assigned to three groups of eight animals each according to body weight. Hanwoo steers in the control group were fed the commercial concentrate for the late fattening stage. The other groups of steers were fed the same diet as control steers, but the concentrate was supplemented with high-$C_{18:2}$ oil mixture (soybean oil, sunflower oil, safflower oil) and fish oil at 6% level of concentrate (DM basis), and monensin (20 ppm). The second and third group of steers was fed the oil mixture supplemented diet with monensin for the last 10 weeks and 20 weeks, respectively, prior to being slaughtered. The oil mixture consisted of 45% soybean oil, 20% sunflower oil, 20% safflower oil and 15% fish oil. Average daily gain (p<0.049) and feed efficiency (p<0.018) of the steers fed the diet supplemented with oil mixture and monensin (OM-M) for 20 weeks were higher than those of the other groups of steers. Dressing percent, fat thickness and longissimus muscle area were not affected by the OM-M supplementation and duration of its feeding. The OM-M supplementation increased the content of total-cholesterol (p<0.0001-0.0007) and HDL-cholesterol (p<0.0001) in the plasma of steers compared to the control diet. The steers fed the OM-M diet had a higher proportion of c9,t11-CLA in plasma (p<0.048-0.044) than the control steers. Feeding the OM-M diet for 20 weeks increased the proportion of CLA in intramuscular (p<0.015), intermuscular (p<0.039) and subcutaneous (p<0.001) fat tissues compared with both steers fed the control diet and the OM-M diet for 10 weeks. Increased (p<0.007) proportion of total unsaturated fatty acids in steers fed the OM-M diet for 20 weeks compared to those in control steers was related to the increased (p<0.001) $C_{18:2}$ and decreased (p<0.001) $C_{18:0}$ proportions in subcutaneous tissue.

키워드

$C_{18:2}$-rich Oils;Monensin;Fish Oil;c9,t11-CLA;Fat Tissue;Hanwoo Steer

참고문헌

  1. Beaulieu, A. D., J. K. Drackey and N. R. Merchen. 2002. Concentrations of conjugated linoleic acid (cis-9, trans-11- octadecadienoic acid) are not increased in tissue lipids of cattle fed a high-concentrate diet supplemented with soybean oil. J. Anim. Sci. 80:847-861
  2. Dhiman, T. R., G. R. Anand, L. D. Satter and M. W. Pariza. 1999. Conjugated Linoleic Acid Content of Milk from Cows Fed Different Diets. J. Dairy Sci. 82:2146-2156 https://doi.org/10.3168/jds.S0022-0302(99)75458-5
  3. Goering, K. K. and P. J. Van Soest. 1970. Forage fiber analysis (apparatus, reagents, procedures, and some application). Agric. Handbook 379, ARS, USDA, Washington, DC
  4. Lawless, F., J. J. Murphy, D. Harrington, R. Devery and C. Stanton. 1998. Elevation of conjugated cis-9, trans-11-octadecadienoic acid in bovine milk because of dietary supplementation. J. Dairy Sci. 81:3259-3267 https://doi.org/10.3168/jds.S0022-0302(98)75890-4
  5. Russel, J. B. 1987. Aproposed model of monnensin action in inhibiting rumen bacteria growth: Effects on ion flux and protonmotive force. J. Anim. Sci. 67:1519
  6. Spears, J. W. and R. W. Harvey. 1984. Performance, ruminal and serum characteristics of steers fed lasalocid on pasture. J. Anim. Sci. 58:460-464 https://doi.org/10.2527/jas1984.582460x
  7. Tesfa, A. T., M. Tuori and L. Syrjala-Qvist. 1991. High rapeseed oil feeding to lactating dairy cows and its effect on milk yield and composition in ruminants. Finn. J. Dairy Sci. 49:65-81
  8. Wang, J. H., S. H. Choi and M. K. Song. 2003. pH Affects the In Vitro Formation of cis-9,trans-11 CLA and trans-11 Octadecenoic acid by Ruminal Bacteria When Incubated with Oilseeds. Asian-Aust. J. Anim. Sci. 16:1743-1748 https://doi.org/10.5713/ajas.2003.1743
  9. Ivan, M., P. S. Mir, K. M. Koenig, L. M. Rode, L. Neill, T. Entz and Z. Mir. 2001. Effects of dietary sunflower seed oil on rumen protozoa population and tissue concentration of conjugated linoleic acid in sheep. Small Rumin. Res. 41:215-227 https://doi.org/10.1016/S0921-4488(01)00220-6
  10. Wang, J. H, M. K. Song, Y. S. Son and M. B. Chang. 2002a. Effect of concentrate level on the formation of conjugated linoleic acid and trans-octadecenoic acid by ruminal bacteria when incubated with oilseeds in vitro. Asian-Aust. J. Anim. Sci. 15:687-694 https://doi.org/10.5713/ajas.2002.687
  11. SAS. 1985. SAS User′s Guide: Statistical Analysis Systems Institute, Inc., Cary, NC
  12. Jiang, J., L. Bjoerk, R. Fonden and M. Emanuelson. 1996. Occurrence of conjugated cis-9,trans-11-octadecadienoic acid in bovine milk: effects of feed and dietary regime. J. Dairy Sci. 79:438-445 https://doi.org/10.3168/jds.S0022-0302(96)76383-X
  13. Zegarska, Z., B. Paszczyk and Z. Borejszo. 1996. Trans fatty acids in milk fat. Pol. J. Food Nutr. Sci. 5:89-96
  14. Lepage, G. and C. C. Roy. 1986. Direct transesterification of all classes of lipid in a one-step reaction. J. Lipid Res. 27:114-121
  15. Madron, M. S., D. G. Peterson, D. A. Dwyer, B. A. Corl, L. H. Baumgard, D. E. Beermann and D. E. Bauman. 2002. Effect of extruded full-fat soybeans on conjugated linoleic acid content of intramuscular, intermuscular, and subcutaneous fat in beef steers. J. Anim. Sci. 80:1135-1143
  16. Bauman, D. E., J. W. Perfield II, M. J. de Veth and AlL. Lock. 2003. New perspectives on lipid digestion and metabolism in ruminants. Proc. Cornell Nutr. Conf. pp. 175-189
  17. Borsting, C. F., T. Hvelplund and M. R. Weisbjerg. 1992. Fatty acid digestibility in lactating cows fed increasing amounts of protected vegetable oil, fish oil or saturated fat. Acta Agric. Scand., Sect. A, Anim. Sci. 42:148-156
  18. Rudel, L. L., J. S. Parks, C. C. Hedrick, M. Thomas and K. Williford. 1998. Lipoprotein and cholesterol metabolism in diet-induced coronary artery atherosclerosis in primates. Role of cholesterol and fatty acids. Prog. Lipid Res. 37(6):353-370 https://doi.org/10.1016/S0163-7827(98)00015-0
  19. Kott, R. W., P. G. Hatfield, J. W. Bergman, C. R. Flynn, H. Van Wagoner and J. A. Boles. 2003. Feedlot performance, carcass composition, and muscle and fat CLA concentrations of lambs fed diets supplemented with safflower seeds. Small Rumin. Res. 2328:1-7
  20. Kelly, M. L., J. R. Berry, D. A. Dwyer, J. M. Griinari, P. Y. Chouinard, M. E. V. Amburgh and D. E. Bauman. 1998. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr. 128:881-885
  21. Lee, K. N., D. Kritchevsky and M. W. Pariza. 1994. Conjugated linoleic acid and artherosclerosis in rabbits. Atherosclerosis. 108:19-25 https://doi.org/10.1016/0021-9150(94)90034-5
  22. Steel, R. G. D. and J. H. Torrie. 1980. Principles and Procedures of Statistics. Mcgraw Hill Book Co., NY
  23. Bauman, D. E., L. H. Baumgard, B. A. Corl and J. M. Griinari. 2000. Biosynthesis of conjugated linoleic acid in ruminants. Proceed. Am. Soc. Anim. Sci. pp. 1-15
  24. AOAC. 1995. Official Methods of Analysis (15th ed.). Association of Official Analytical Chemists, Washington, DC
  25. Beaulieu, A. D., J. K. Drackey, N. R. Merchen and E. L. Falkenstein. 2000. Concentrations of conjugated linoleic acid in beef carcasses are not increased by supplementing a highcorn diet with 5% soybean oil. J. Anim. Sci. 78 (suppl. 1):285 (Abs.)
  26. Scollan, N. D., N. J. Choi, M. Enser and J. D. Wood. 1997. Digestion of linseed and fish oil fatty acids by steers. 48th Annual Meeting of EAAP, Vienna, 24-28th August
  27. Fellner, V., F. D. Sauer and J. K. G. Kramer. 1997. Effect of nigericin, monensin, and tetronasin on biohydrogenation in continous flow-through ruminal fermenters. J. Dairy Sci. 80:921-928 https://doi.org/10.3168/jds.S0022-0302(97)76015-6
  28. Timmen, H. and S. Patton. 1988. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity. Lipids. 23:685-689 https://doi.org/10.1007/BF02535669
  29. Wang, J. H., S. H. Choi, C. G. Yan and M. K. Song. 2005. Effect of monensin and fish oil supplementation on biohydrogenation and CLA production by rumen bacteria in vitro when incubated with safflower oil. Asian-Aust. J. Anim. Sci. 18:221- 225 https://doi.org/10.5713/ajas.2005.221
  30. Vonghia, G., A. Viceni, F. Pinto, A. Mastrosimone, A. D. Decandia and G. V. Gnoni. 1997. The utilization of safflower cake, olive residues meal and whey meal in lamb feeding. In: Proceedings of the Fourth International Safflower Conference, Bari, Italy
  31. Wang, J. H. and M. K. Song. 2002b. Effect of concentrate to roughage ratio and oil source on the formation of t-11C18:1 and c-9, t-11C18:2 in rumen fluid and plasma of sheep. The 4th Korea-Japan Joint Symposium on Rumen Metabolism and Physiology in Jeju, Korea. p. 113 (Abs.)
  32. Ha, Y. L., N. K. Grimm and M. W. Pariza. 1987. Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis. 8:1881-1887 https://doi.org/10.1093/carcin/8.12.1881
  33. Krehbiel, C. R., R. A. McCoy, R. A. Stock, T. J. Klopfenstein, D. H. Shain and R. P. Huffman. 1995. Influence of grain type, tallow level, and tallow feeding system on feedlot cattle performance. J. Anim. Sci. 73:2916-2921
  34. Mir, Z., M. L. Rushfeldt, P. S. Mir, L. J. Paterson and R. J. Weselake. 2000. Effect of dietary supplementation with either conjugated linoleic acid (CLA) or linoleic acid rich oil on the CLA content of lamb tissues. Small Rumin. Res. 36:25-31 https://doi.org/10.1016/S0921-4488(99)00087-5
  35. Folch, J., M. Lee. and G. H. Sloan-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 226:497-509
  36. Michal, J. J., B. P. Chew, T. D. Schultz and T. S. Wong. 1992. Interaction of conjugated dienoic derivatives of linoleic acid with carotene on cellular host defence. FASEB J. 6, A1102
  37. Stanton, C., F. Lawless, G. Kjellmer, D. Harrington, R. Devery, J. F. Connolly and J. Murphy. 1997. Dietary influences on bovine milk cis-9,trans-11-conjugated linoleic acid content. J. Food Sci. 62:1083-1086 https://doi.org/10.1111/j.1365-2621.1997.tb15043.x

피인용 문헌

  1. Effects of supplemental soybean oil and vitamin E on carcass quality and fatty acid profiles of meat in Huzhou lamb vol.58, pp.3, 2008, https://doi.org/10.5713/ajas.2006.1464
  2. Effects of dietary corn oil and vitamin E supplementation on fatty acid profiles and expression of acetyl CoA carboxylase and stearoyl-CoA desaturase gene in Hu sheep vol.81, pp.2, 2010, https://doi.org/10.5713/ajas.2006.1464
  3. Rumen microbial response in production of CLA and methane to safflower oil in association with fish oil or/and fumarate vol.82, pp.3, 2011, https://doi.org/10.5713/ajas.2006.1464
  4. Effect of Feeding Whole Crop Barley Silage- or Whole Crop Rye Silage based-TMR and Duration of TMR Feeding on Growth, Feed Cost and Meat Characteristics of Hanwoo Steers vol.54, pp.2, 2012, https://doi.org/10.5713/ajas.2006.1464
  5. Cis-9, trans-11-Conjugated Linoleic Acid in Dairy Goat Milk was Increased by High Linoleic (Soybean Oil) or Linolenic (Linseed Oil) Acid Diet vol.33, pp.4, 2013, https://doi.org/10.5713/ajas.2006.1464
  6. Conjugated fatty acids and methane production by rumen microbes when incubated with linseed oil alone or mixed with fish oil and/or malate vol.86, pp.8, 2015, https://doi.org/10.5713/ajas.2006.1464